
Phased Array System Toolbox™

User's Guide

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Phased Array System Toolbox™ User's Guide
© COPYRIGHT 2011–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011 Online only Revised for Version 1.0 (R2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)
September 2012 Online only Revised for Version 1.3 (R2012b)
March 2013 Online only Revised for Version 2.0 (R2013a)
September 2013 Online only Revised for Version 2.1 (R2013b)
March 2014 Online only Revised for Version 2.2 (R2014a)
October 2014 Online only Revised for Version 2.3 (R2014b)
March 2015 Online only Revised for Version 3.0 (R2015a)
September 2015 Online only Revised for Version 3.1 (R2015b)
March 2016 Online only Revised for Version 3.2 (R2016a)

v

Contents

Phased Arrays

Antenna and Microphone Elements
1

Isotropic Antenna Element . 1-2
Support for Isotropic Antenna Elements 1-2
Backbaffled Isotropic Antenna 1-2
Response of Backbaffled Isotropic Antenna Element . . . 1-5

Cosine Antenna Element . 1-7
Support for Cosine Antenna Elements 1-7
Concentrating Cosine Antenna Response 1-7
Plot 3-D Response of Cosine Antenna Element 1-9

Custom Antenna Element . 1-11
Support for Custom Antenna Elements 1-11
Antenna with Custom Radiation Pattern 1-11

Omnidirectional Microphone . 1-14
Support for Omnidirectional Microphones 1-14
Backbaffled Omnidirectional Microphone 1-14

Custom Microphone Element . 1-19
Support for Custom Microphone Elements 1-19
Custom Cardioid Microphone Pattern 1-19

Short-dipole Antenna Element . 1-21
Short-Dipole Polarization Components 1-23

Crossed-dipole Antenna Element 1-25
LHCP and RHCP Polarization Components 1-26

vi Contents

Using Antenna Toolbox with Phased Array Systems . . 1-29

Array Geometries and Analysis
2

Uniform Linear Array . 2-2
Support for Uniform Linear Arrays 2-2
Positions of Elements in Array 2-2
Identical Elements in Array . 2-3
Response of Array Elements . 2-4
Signal Delay Between Array Elements 2-4
Steering Vector . 2-5
Array Response . 2-6
Reception of Plane Wave Across Array 2-7

Microphone ULA Array . 2-9

Uniform Rectangular Array . 2-12
Support for Uniform Rectangular Arrays 2-12
Uniform Rectangular Array of Isotropic Antenna

Elements . 2-12

Conformal Array . 2-16
Support for Arrays with Custom Geometry 2-16
Create Default Conformal Array 2-16
Uniform Circular Array Created from Conformal Array 2-17
Custom Antenna Array . 2-19

Subarrays Within Arrays . 2-23
Definition of Subarrays . 2-23
Benefits of Using Subarrays . 2-23
Support for Subarrays Within Arrays 2-23
Rectangular Array Partitioned into Linear Subarrays . 2-24
Linear Subarray Replicated to Form Rectangular Array 2-28
Linear Subarray Replicated in a Custom Grid 2-30

Phased Array Apps . 2-33
Plot Array Directivity Using Sensor Array Analyzer

App . 2-33

vii

Signal Radiation and Collection
3

Signal Radiation . 3-2
Support for Modeling Signal Radiation 3-2
Radiate Signal with Uniform Linear Array 3-2

Signal Collection . 3-4
Support for Modeling Signal Collection 3-4
Narrowband Collector for Uniform Linear Array 3-5
Narrowband Collector for a Single Antenna Element . . . 3-6
Wideband Signal Collection . 3-7

Waveforms, Transmitter, and Receiver
4

Rectangular Pulse Waveforms . 4-2
Definition of Rectangular Pulse Waveform 4-2
How to Create Rectangular Pulse Waveforms 4-2
Rectangular Waveform Plot . 4-2
Pulses of Rectangular Waveform . 4-4

Linear Frequency Modulated Pulse Waveforms 4-6
Benefits of Using Linear FM Pulse Waveform 4-6
Definition of Linear FM Pulse Waveform 4-6
How to Create Linear FM Pulse Waveforms 4-7
Configure Linear FM Pulse Waveform 4-8
Linear FM Pulse Waveform Plot . 4-8
Ambiguity Function of Linear FM Waveform 4-10
Compare Autocorrelation for Rectangular and Linear FM

Waveforms . 4-12

Stepped FM Pulse Waveforms . 4-14

FMCW Waveforms . 4-16
Benefits of Using FMCW Waveform 4-16
How to Create FMCW Waveforms . 4-16
Double Triangular Sweep . 4-17

viii Contents

Phase-Coded Waveforms . 4-19
When to Use Phase-Coded Waveforms 4-19
How to Create Phase-Coded Waveforms 4-19
Basic Radar Using Phase-Coded Waveform 4-20

Waveforms with Staggered PRFs . 4-23
When to Use Staggered PRFs . 4-23
Linear FM Waveform with Staggered PRF 4-23

Plot Spectrogram Using Radar Waveform Analyzer App . . 4-25

Transmitter . 4-28
Transmitter Object . 4-28
Phase Noise . 4-30

Receiver Preamp . 4-34
Operation of Receiver Preamp . 4-34
Configuring Receiver Preamp . 4-34
Model Receiver Effects on Sinusoidal Input 4-36
Model Coherent on Receive Behavior 4-38

Radar Equation . 4-40
Radar Equation Theory . 4-40
Link Budget Calculation Using the Radar Equation 4-41
Maximum Detectable Range for a Monostatic Radar 4-42
Output SNR at the Receiver in a Bistatic Radar 4-43

Display Vertical Coverage Diagram 4-44

Compute Peak Power Using Radar Equation Calculator
App . 4-45

Beamforming
5

Conventional Beamforming . 5-2
Uses for Beamformers . 5-2
Support for Conventional Beamforming 5-2
Narrowband Phase Shift Beamformer with a ULA 5-2

ix

Adaptive Beamforming . 5-7
Benefits of Adaptive Beamforming . 5-7
Support for Adaptive Beamforming . 5-7
LCMV Beamformer . 5-7

Wideband Beamforming . 5-11
Support for Wideband Beamforming 5-11
Time-Delay Beamforming of Microphone ULA Array 5-11
Visualization of Wideband Beamformer Performance 5-13

Time-Delay Beamforming of Microphone ULA Array 5-18

Visualization of Wideband Beamformer Performance 5-20

Direction-of-Arrival (DOA) Estimation
6

Beamscan Direction-of-Arrival Estimation 6-2

Super-Resolution DOA Estimation . 6-4

Target Tracking Using Sum-Difference Monopulse Radar . . 6-8

Space-Time Adaptive Processing (STAP)
7

Angle-Doppler Response . 7-2
Benefits of Visualizing Angle-Doppler Response 7-2
Angle-Doppler Response of a Stationary Target at a Stationary

Array . 7-2
Angle-Doppler Response of a Stationary Target Return at a

Moving Array . 7-4

Displaced Phase Center Antenna (DPCA) Pulse Canceller . . 7-8
When to Use the DPCA Pulse Canceller 7-8
Example: DPCA Pulse Canceller for Clutter Rejection 7-8

x Contents

Adaptive Displaced Phase Center Antenna Pulse Canceller 7-13
When to Use the Adaptive DPCA Pulse Canceller 7-13
Example: Adaptive DPCA Pulse Canceller 7-13

Sample Matrix Inversion (SMI) Beamformer 7-18
When to Use the SMI Beamformer 7-18
Example: Sample Matrix Inversion (SMI) Beamformer 7-18

Detection
8

Neyman-Pearson Hypothesis Testing 8-2
Purpose of Hypothesis Testing . 8-2
Support for Neyman-Pearson Hypothesis Testing 8-2
Threshold for Real-Valued Signal in White Gaussian Noise . . 8-3
Threshold for Two Pulses of Real-Valued Signal in White

Gaussian Noise . 8-4
Threshold for Complex-Valued Signals in Complex White

Gaussian Noise . 8-5

Receiver Operating Characteristic (ROC) Curves 8-7

Monte-Carlo ROC Simulation . 8-12

Matched Filtering . 8-22
Reasons for Using Matched Filtering 8-22
Support for Matched Filtering . 8-22
Matched Filtering of Linear FM Waveform 8-22
Matched Filtering to Improve SNR for Target Detection . . . 8-24

Stretch Processing . 8-28
Reasons for Using Stretch Processing 8-28
Support for Stretch Processing . 8-28
Stretch Processing Procedure . 8-28

FMCW Range Estimation . 8-30

Range-Doppler Response . 8-32
Benefits of Producing Range-Doppler Response 8-32
Support for Range-Doppler Processing 8-32

xi

Range-Speed Response Pattern of Target 8-34

Constant False-Alarm Rate (CFAR) Detectors 8-38
Reasons for Using CFAR Detectors 8-38
Cell-Averaging CFAR Detector . 8-39
Testing CFAR Detector Adaption to Noisy Input Data 8-41
Extensions of Cell-Averaging CFAR Detector 8-42
Detection Probability for CFAR Detector 8-42

Measure Intensity Levels Using the Intensity Scope 8-45
RTI and DTI Displays in Full Radar Simulation 8-46

Environment and Target Models
9

Free Space Path Loss . 9-2
Support for Modeling Propagation in Free Space 9-2
Free Space Path Loss in Decibels . 9-2
Propagation of a Linear FM Pulse Waveform to and from a

Target . 9-3
One-Way and Two-Way Propagation 9-4
Propagation from Stationary Radar to Moving Target 9-5

Two-Ray Multipath Propagation . 9-9

Free-Space Propagation of Wideband Signals 9-12

Radar Target . 9-14

Swerling 1 Target Models . 9-18

Swerling Target Models . 9-23

Swerling 3 Target Models . 9-29

Swerling 4 Target Models . 9-34

Clutter Modeling . 9-40
Surface Clutter Overview . 9-40
Approaches for Clutter Simulation or Analysis 9-40

xii Contents

Considerations for Setting Up a Constant Gamma Clutter
Simulation . 9-41

Related Examples . 9-42

Barrage Jammer . 9-43
Support for Modeling Barrage Jammer 9-43
Model Barrage Jammer Output . 9-43
Model Effect of Barrage Jammer on Target Echo 9-45

Coordinate Systems and Motion Modeling
10

Rectangular Coordinates . 10-2
Definitions of Coordinates . 10-2
Notation for Vectors and Points . 10-4
Orthogonal Basis and Euclidean Norm 10-4
Orientation of Coordinate Axes . 10-4
Rotations and Rotation Matrices . 10-5

Spherical Coordinates . 10-13
Support for Spherical Coordinates 10-13
Azimuth and Elevation Angles . 10-13
Phi and Theta Angles . 10-14
U and V Coordinates . 10-15
Conversion from Rectangular and Spherical Coordinates . . 10-16
Broadside Angle . 10-17

Global and Local Coordinate Systems 10-21
Global Coordinate System . 10-21
Local Coordinate Systems . 10-21
Converting Between Global and Local Coordinate Systems 10-40

Global and Local Coordinate Systems Radar Example . . . 10-42

Motion Modeling in Phased Array Systems 10-52
Support for Motion Modeling . 10-52
Platform Motion with Constant Velocity 10-53
Platform Motion with Nonconstant Velocity 10-54
Track Range and Angle Changes Between Platforms 10-55

xiii

Model Motion of Circling Airplane 10-57

Doppler Shift and Pulse-Doppler Processing 10-60
Support for Pulse-Doppler Processing 10-60
Converting Speed to Doppler Shift 10-60
Converting Doppler Shift to Speed 10-61
Pulse-Doppler Processing of Slow-Time Data 10-61

Using Polarization
11

Polarized Fields . 11-2
Introduction to Polarization . 11-2
Linear and Circular Polarization . 11-4
Elliptic Polarization . 11-9
Linear and Circular Polarization Bases 11-13
Sources of Polarized Fields . 11-17
Scattering Cross-Section Matrix . 11-25
Polarization Loss Due to Field and Receiver Mismatch . . . 11-29
Polarization Example . 11-31

Antenna and Array Definitions
12

Element and Array Radiation and Response Patterns 12-2
Element Response and Radiation Patterns 12-2
Array Response and Radiation Patterns 12-6
Create Grating Lobe Diagram for Microphone URA 12-10

Code Generation
13

Code Generation . 13-2
Code Generation Use and Benefits 13-2

xiv Contents

Limitations Specific to Phased Array System Toolbox 13-3
General Limitations . 13-6
Limitations for System Objects that Require Dynamic Memory

Allocation . 13-11

Generate MEX Function to Estimate Directions of Arrival 13-12

Generate MEX Function Containing Persistent System
Objects . 13-15

Functions and System Objects Supported for C/C++ Code
Generation . 13-18

Define New System Objects
14

Define Basic System Objects . 14-3

Change Number of Step Inputs or Outputs 14-6

Validate Property and Input Values 14-10

Initialize Properties and Setup One-Time Calculations . . 14-13

Set Property Values at Construction Time 14-16

Reset Algorithm State . 14-18

Define Property Attributes . 14-20

Hide Inactive Properties . 14-24

Limit Property Values to Finite String Set 14-26

Process Tuned Properties . 14-29

Release System Object Resources . 14-31

Define Composite System Objects . 14-33

xv

Define Finite Source Objects . 14-36

Save System Object . 14-38

Load System Object . 14-42

Define System Object Information 14-46

Add Data Types Tab to MATLAB System Block 14-48

Add Button to MATLAB System Block 14-50

Specify Locked Input Size . 14-53

Set Model Reference Discrete Sample Time Inheritance . 14-55

Methods Timing . 14-57
Setup Method Call Sequence . 14-57
Step Method Call Sequence . 14-58
Reset Method Call Sequence . 14-58
Release Method Call Sequence . 14-59

System Object Input Arguments and ~ in Code Examples 14-60

What Are Mixin Classes? . 14-61

Best Practices for Defining System Objects 14-62

Insert System Object Code Using MATLAB Editor 14-65
Define System Objects with Code Insertion 14-65
Create Fahrenheit Temperature String Set 14-68
Create Custom Property for Freezing Point 14-69
Define Input Size As Locked . 14-70

Analyze System Object Code . 14-72
View and Navigate System object Code 14-72
Example: Go to StepImpl Method Using Analyzer 14-72

Define System Object for Use in Simulink 14-75
Develop System Object for Use in System Block 14-75
Define Block Dialog Box for Plot Ramp 14-76

Phased Arrays

1

Antenna and Microphone Elements

• “Isotropic Antenna Element” on page 1-2
• “Cosine Antenna Element” on page 1-7
• “Custom Antenna Element” on page 1-11
• “Omnidirectional Microphone” on page 1-14
• “Custom Microphone Element” on page 1-19
• “Short-dipole Antenna Element” on page 1-21
• “Crossed-dipole Antenna Element” on page 1-25
• “Using Antenna Toolbox with Phased Array Systems” on page 1-29

1 Antenna and Microphone Elements

1-2

Isotropic Antenna Element

In this section...

“Support for Isotropic Antenna Elements” on page 1-2
“Backbaffled Isotropic Antenna” on page 1-2
“Response of Backbaffled Isotropic Antenna Element” on page 1-5

Support for Isotropic Antenna Elements

An isotropic antenna element radiates equal power in all directions. If the antenna
element is backbaffled, the antenna radiates equal power in all directions for which the
azimuth angle satisfies –90 ≤ φ ≤ 90 and zero power in all other directions. To construct
an isotropic antenna, use the phased.IsotropicAntennaElement System object™. When
you use this object, you must specify these antenna properties:

• The operating frequency range of the antenna using the FrequencyRange property.
• Whether or not the response of the antenna is backbaffled at azimuth angles outside

the interval [–90,90] using the BackBaffled property.

You can determine the voltage response of the isotropic antenna element at specified
frequencies and angles using the step method.

Backbaffled Isotropic Antenna

This example shows how to construct a backbaffled isotropic antenna element with a
uniform frequency response over a range of azimuth angles from [-180,180] degrees and
elevation angles from [-90,90] degrees. The antenna operates between 300 Mhz and 1
GHz.

sIsoAnt = phased.IsotropicAntennaElement(...

 'FrequencyRange',[300e6 1e9],'BackBaffled',false);

pattern(sIsoAnt,1e9,[-180:180],[-90:90],'CoordinateSystem','polar',...

 'Type','power')

 Isotropic Antenna Element

1-3

Using the antenna pattern method, plot the antenna response at zero degrees elevaton
for all azimuth angles at 1 GHz.

pattern(sIsoAnt,1e9,[-180:180],0,'CoordinateSystem','rectangular',...

 'Type','powerdb')

1 Antenna and Microphone Elements

1-4

Setting the BackBaffled property to true restricts the antenna response to azimuth
angles in the interval [-90,90] degrees. In this case, plot the antenna response in three
dimensions.

sIsoAnt.BackBaffled = true;

pattern(sIsoAnt,1e9,[-180:180],[-90:90],'CoordinateSystem','polar',...

 'Type','power')

 Isotropic Antenna Element

1-5

Response of Backbaffled Isotropic Antenna Element

This example shows how to design a backbaffled isotropic antenna element and obtain
its response. First, construct an X-band isotropic antenna element that operates from
8 to 12 GHz setting the Backbaffle property to true. Obtain the antenna element
response at 4, 10, and 14 GHz at azimuth angles between -100 and 100 degrees in 50
degree increments. All elevation angles are by default equal to zero.

sIsoAnt = phased.IsotropicAntennaElement(...

 'FrequencyRange',[8e9 12e9],'BackBaffled',true);

respfreqs = [6:4:14]*1e9;

respazangles = -100:50:100;

anresp = step(sIsoAnt,respfreqs,respazangles)

1 Antenna and Microphone Elements

1-6

anresp =

 0 0 0

 0 1 0

 0 1 0

 0 1 0

 0 0 0

The antenna response in anresp is a matrix having row dimension equal to the number
of azimuth angles in respazangles and column dimension equal to the number
of frequencies in respfreqs. The response voltage in the first and last columns of
anresp are zero because those columns contain the antenna response at 6 and 14 GHz,
respectively. These frequencies lie outside the antenna operating frequency range.
Similarly, the first and last rows of anresp contain all zeros because BackBaffled
property is set to true. The first and last row contain the antenna response at azimuth
angles outside of [-90,90].

To obtain the antenna response at nonzero elevation angles, input the angles to step as
a 2-by-M matrix where each column is an angle in the form [azimuth;elevation].

release(sIsoAnt)

respelangles = -90:45:90;

respangles = [respazangles; respelangles];

anresp = step(sIsoAnt,respfreqs,respangles)

anresp =

 0 1 0

 0 1 0

 0 1 0

 0 1 0

 0 1 0

Notice that anresp(1,2) and anresp(5,2) represent the antenna voltage response at
the azimuth-elevation angle pairs (-100,-90) and (100,90) degrees. Although the azimuth
angles lie in the baffled region, because the elevation angles are equal to +/- 90 degrees,
the responses are unity. In this case, the resulting elevation cut degenerates to a point.

 Cosine Antenna Element

1-7

Cosine Antenna Element

In this section...

“Support for Cosine Antenna Elements” on page 1-7
“Concentrating Cosine Antenna Response” on page 1-7
“Plot 3-D Response of Cosine Antenna Element” on page 1-9

Support for Cosine Antenna Elements

The phased.CosineAntennaElement object models an antenna element whose response
follows a cosine function raised to a specified power in both the azimuth and elevation
directions.

The cosine response, or cosine pattern, is given by:

P az el az el
m n(,) cos ()cos ()=

In this expression:

• az is the azimuth angle.
• el is the elevation angle.
• The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between –90 and 90 degrees,
inclusive. There is no response at the back of a cosine antenna. The cosine response
pattern achieves a maximum value of 1 at 0 degrees azimuth and elevation. Raising the
response pattern to powers greater than one concentrates the response in azimuth or
elevation.

When you use the cosine antenna element, you specify the exponents of the cosine
pattern using the CosinePower property and the operating frequency range of the
antenna using the FrequencyRange property.

Concentrating Cosine Antenna Response

This example shows the effect of concentrating the cosine antenna response by increasing
the exponent of the cosine factor. The example computes and plots the cosine response for

1 Antenna and Microphone Elements

1-8

exponents equal to 1 and 2 for a single angle between -90 and 90 degrees. The angle can
represent azimuth or elevation.

theta = -90:.01:90;

costh1 = cosd(theta);

costh2 = costh1.^2;

plot(theta,costh1)

hold on

plot(theta,costh2,'r')

hold off

legend('Exponent = 1','Exponent = 2','location','northeast');

xlabel('Angle (degrees')

ylabel('Response')

 Cosine Antenna Element

1-9

Plot 3-D Response of Cosine Antenna Element

This example shows how to construct an antenna with a cosine-squared response in both
azimuth and elevation. The operating frequency range of the antenna is 1 to 10 GHz. Plot
the 3-D antenna response at 5 GHz.

sCos = phased.CosineAntennaElement(...

 'FrequencyRange',[1 10]*1e9,'CosinePower',[2 2]);

pattern(sCos,5e9,[-180:180],[-90:90],'CoordinateSystem',...

 'Polar','Type','powerdb')

1 Antenna and Microphone Elements

1-10

 Custom Antenna Element

1-11

Custom Antenna Element

In this section...

“Support for Custom Antenna Elements” on page 1-11
“Antenna with Custom Radiation Pattern” on page 1-11

Support for Custom Antenna Elements

The phased.CustomAntennaElement object enables you to model a custom antenna
element. When you use phased.CustomAntennaElement, you must specify these
aspects of the antenna:

• Operating frequency vector for the antenna element
• Frequency response of the element at the frequencies in the operating frequency

vector
• Azimuth angles and elevation angles where the custom response is evaluated
• Magnitude radiation pattern. This pattern shows the spatial response of the antenna

at the azimuth and elevation angles you specify.

Tip You can import a radiation pattern that uses u/v coordinates or φ/θ
angles, instead of azimuth/elevation angles. To use such a pattern with
phased.CustomAntennaElement, first convert your pattern to azimuth/elevation
form. Use uv2azelpat or phitheta2azelpat to do the conversion. For an example,
see Antenna Array Analysis with Custom Radiation Pattern.

For your custom antenna element, the antenna response (the output of step) depends
on the frequency response and radiation pattern. Specifically, the frequency and spatial
responses are interpolated separately using nearest-neighbor interpolation and then
multiplied together to produce the total response. To avoid interpolation errors, the
range of azimuth angles should include +/– 180 degrees and the range of elevation angles
should include +/– 90 degrees.

Antenna with Custom Radiation Pattern

This example shows how to construct a custom antenna element object. The radiation
pattern is independent of azimuth angle and has a cosine pattern for the elevation
angles.

../examples/antenna-array-analysis-with-custom-radiation-pattern.html

1 Antenna and Microphone Elements

1-12

az = -180:90:180;

el = -90:45:90;

elresp = cosd(el);

sCust = phased.CustomAntennaElement('AzimuthAngles',az,...

 'ElevationAngles',el,...

 'RadiationPattern',repmat(elresp',1,numel(az)));

Show the radiation pattern.

disp(sCust.RadiationPattern)

 0 0 0 0 0

 0.7071 0.7071 0.7071 0.7071 0.7071

 1.0000 1.0000 1.0000 1.0000 1.0000

 0.7071 0.7071 0.7071 0.7071 0.7071

 0 0 0 0 0

Use the step method to calculate the antenna response at the azimuth-elevation pairs
(-30,0) and (-45,0) at 500 Mhz.

ang = [-30 0; -45 0];

resp = step(sCust,500e6,ang);

disp(resp)

 1.0848

 1.1220

The following illustrates the nearest-neighbor interpolation method used to find the
antenna voltage response in the two directions. The total response is the product of the
angular response and the frequency response.

g = interp2(degtorad(sCust.AzimuthAngles),...

 degtorad(sCust.ElevationAngles),...

 db2mag(sCust.RadiationPattern),...

 degtorad(ang(1,:))', degtorad(ang(2,:))','nearest',0);

h = interp1(sCust.FrequencyVector,...

 db2mag(sCust.FrequencyResponse),500e6,'nearest',0);

antresp = h.*g;

Compare the value of antresp to the output of the step method.

disp(antresp)

 1.0848

 Custom Antenna Element

1-13

 1.1220

1 Antenna and Microphone Elements

1-14

Omnidirectional Microphone

In this section...

“Support for Omnidirectional Microphones” on page 1-14
“Backbaffled Omnidirectional Microphone” on page 1-14

Support for Omnidirectional Microphones

An omnidirectional microphone has a response which is equal to one in all nonbaffled
directions. The phased.OmnidirectionalMicrophoneElement object enables you to model
an omnidirectional microphone. When you use this object, you must specify these aspects
of the microphone:

• The operating frequency range of the microphone using the FrequencyRange
property.

• Whether the response of the microphone is baffled at azimuth angles outside the
interval [–90,90] degrees using the BackBaffled property.

Backbaffled Omnidirectional Microphone

Construct an omnidirectional microphone element having a response within the human
audible frequency range of 20 to 20,000 Hz. Baffle the microphone response for azimuth
angles outside of +/- 90 degrees. Plot in polar form the microphone power response at 1
kHz.

freq = 1e3;

smic = phased.OmnidirectionalMicrophoneElement(...

 'BackBaffled',true,'FrequencyRange',[20 20e3]);

pattern(smic,freq,[-180:180],[-90:90],'CoordinateSystem','polar','Type','power');

 Omnidirectional Microphone

1-15

In many applications, you sometimes need to examine the microphone directionality,
or polar pattern. To obtain an azimuth cut, set the elevation argument of the pattern
method to a single angle such as zero.

pattern(smic,freq,[-180:180],0,'CoordinateSystem','polar','Type','power');

1 Antenna and Microphone Elements

1-16

To obtain an elevation cut, set the azimuth argument of the pattern method to a single
angle such as zero.

pattern(smic,freq,0,[-90:90],'CoordinateSystem','polar','Type','power');

 Omnidirectional Microphone

1-17

Use the step method to obtain the microphone magnitude response at the specified
azimuth angles and frequencies. By default, when the ang argument is a single row,
the elevation angles are 0 degrees. Note the response is unity at all azimuth angles and
frequencies, as expected.

freqs = [100:250:1e3];

ang = [-90:30:90];

micresp = step(smic,freqs,ang)

micresp =

 1 1 1 1

 1 1 1 1

1 Antenna and Microphone Elements

1-18

 1 1 1 1

 1 1 1 1

 1 1 1 1

 1 1 1 1

 1 1 1 1

 Custom Microphone Element

1-19

Custom Microphone Element

In this section...

“Support for Custom Microphone Elements” on page 1-19
“Custom Cardioid Microphone Pattern” on page 1-19

Support for Custom Microphone Elements

You can model a microphone with a custom response pattern using
phased.CustomMicrophoneElement System object. The total response of a custom
microphone element is a combination of its frequency response and spatial response.
phased.CustomMicrophoneElement calculates both responses using nearest
neighbor interpolation and then multiplies them to form the total response. When the
PolarPatternFrequencies property value is nonscalar, the object specifies multiple
polar patterns. In this case, the interpolation uses the polar pattern that is measured
closest to the specified frequency. When you use phased.CustomMicrophoneElement,
you must specify these microphone attributes.:

• Frequencies where you specify your response using the FrequencyVector property.
• Response corresponding to the specified frequencies using the FrequencyResponse

property.
• Frequencies and angles at which the microphone’s polar pattern is measured.
• Magnitude response of the microphone.

Custom Cardioid Microphone Pattern

Create a custom cardioid microphone, and plot the power response pattern at 500 and
800 Hz.

sCustMic = phased.CustomMicrophoneElement;

sCustMic.PolarPatternFrequencies = [500 1000];

sCustMic.PolarPattern = mag2db([...

 0.5+0.5*cosd(sCustMic.PolarPatternAngles);...

 0.6+0.4*cosd(sCustMic.PolarPatternAngles)]);

pattern(sCustMic,[500,800],[-180:180],0,'Type','powerdb')

1 Antenna and Microphone Elements

1-20

Related Examples
• “Microphone ULA Array” on page 2-9

 Short-dipole Antenna Element

1-21

Short-dipole Antenna Element

When you want to explicitly study the effects of polarization in a radar or
communication system, you need to specify an antenna that can generate polarized
radiation. One such antenna is the short-dipole antenna, created by using the
phased.ShortDipoleAntennaElement.

The simplest polarized antenna is the dipole antenna which consist of a split length of
wire coupled at the middle to a coaxial cable. The simplest dipole, from a mathematical
perspective, is the Hertzian dipole, in which the length of wire is much shorter than a
wavelength. A diagram of the short dipole antenna of length L appears in the next figure.
This antenna is fed by a coaxial feed which splits into two equal length wires of length
L/2. The current, I, moves along the z-axis and is assumed to be the same at all points in
the wire.

1 Antenna and Microphone Elements

1-22

az

el

x

y

z

r

EH

EV
L/2

-L/2

The electric field in the far field has the form

E

E

E
iZ IL e

r

r

H

V

ikr

=

=

= -

-

0

0

2

0

l
cos el

The next example computes the vertical and horizontal polarization components of the
field. The vertical component is a function of elevation angle and is axially symmetric.
The horizontal component vanishes everywhere.

 Short-dipole Antenna Element

1-23

Short-Dipole Polarization Components

Compute the vertical and horizontal polarization components of the field created by a
short-dipole antenna pointed along the z-direction. Plot the components as a function of
elevation angle from 0° to 360°.

Create the phased.ShortDipoleAntennaElement System object™.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[1,2]*1e9,'AxisDirection','Z');

Compute the antenna response. Because the elevation angle argument to the step
method is restricted to ±90°, first construct the response for 0° azimuth, and then for
180° azimuth. Combine the two responses. The operating frequency of the antenna is 1.5
GHz.

el = [-90:90];

az = zeros(size(el));

fc = 1.5e9;

resp = step(sSD,fc,[az;el]);

az = 180.0*ones(size(el));

resp1 = step(sSD,fc,[az;el]);

Overlay the responses in the same figure.

figure(1);

subplot(121);

polar(el*pi/180.0,abs(resp.V.'),'b')

hold on

polar((el+180)*pi/180.0,abs(resp1.V.'),'b')

str = sprintf('%s\n%s','Vertical Polarization','vs Elevation Angle');

title(str)

hold off

subplot(122);

polar(el*pi/180.0,abs(resp.H.'),'b')

hold on

polar((el+180)*pi/180.0,abs(resp1.H.'),'b')

str = sprintf('%s\n%s','Horizontal Polarization','vs Elevation Angle');

title(str)

hold off

1 Antenna and Microphone Elements

1-24

The plot shows that the horizontal component vanishes, as expected.

 Crossed-dipole Antenna Element

1-25

Crossed-dipole Antenna Element

Another antenna that produces polarized radiation is the crossed-dipole antenna, created
by using the phased.CrossedDipoleAntennaElement.

You can use a cross-dipole antenna to generate circularly-polarized radiation. The
crossed-dipole antenna consists of two identical but orthogonal short-dipole antennas
that are phased 90° apart. A diagram of the crossed dipole antenna appears in the
following figure. The electric field created by a crossed-dipole antenna constructed from a
y-directed short dipole and a z-directed short dipole has the form

E

E
iZ IL e

r

E
iZ IL

i
e

r

H

ikr

V

=

= -

=

-

0

2

2

0

0

l

l

cos

(sin sin cos)

az

el az + el
--ikr

r

The polarization ratio EV/EH, when evaluated along the x-axis, is just –i which means
that the polarization is exactly RHCP along the x-axis. It is predominantly RHCP
when the observation point is close to the x-axis. Moving away from the x-axis, the field
becomes a mixture of LHCP and RHCP polarizations. Along the –x-axis, the field is
LHCP polarized. The figure illustrates, for a point near the x, that the field is primarily
RHCP.

1 Antenna and Microphone Elements

1-26

az

el

x

y

z

EL

L/2-L/2

L/2

-L/2

The next example computes the circularly polarized field components. You can see how
the circular polarization changes from pure RHCP at 0° azimuth angle to LHCP at 180°
azimuth angle, both at 0° elevation.

LHCP and RHCP Polarization Components

Plot the right-handed and left-handed circular polarization components at 1.5 GHz.

Create the phased.CrossedDipoleAntennaElement System object™.

fc = 1.5e9;

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);

 Crossed-dipole Antenna Element

1-27

Compute the left-handed and right-handed circular polarization components.

az = [-180:180];

el = zeros(size(az));

resp = step(sCD,fc,[az;el]);

cfv = pol2circpol([resp.H.';resp.V.']);

clhp = cfv(1,:);

crhp = cfv(2,:);

Plot both circular polarization components at 0° elevation.

polar(az*pi/180.0,abs(clhp))

hold on

polar(az*pi/180.0,abs(crhp))

title('LHCP and RHCP vs Azithmuth Angle');

legend('LHCP','RHCP')

hold off

1 Antenna and Microphone Elements

1-28

 Using Antenna Toolbox with Phased Array Systems

1-29

Using Antenna Toolbox with Phased Array Systems

When you create antenna arrays such as a uniform linear array (ULA), you can use
antennas that are built into Phased Array System Toolbox™. Alternatively, you can
use Antenna Toolbox™ antennas. Antenna Toolbox antennas provide realistic models of
physical antennas. They are designed using method of moments. Phased array antennas
represent more idealized antennas that are useful for radar performance analysis and
higher level modelling. Some phased array antennas cannot be physically realized, such
as the isotropic antenna but are still conceptually useful. You can build and analyze
systems using both types of antennas in an identical manner. This example shows how to
construct a phased array with either Phased Array System Toolbox or Antenna Toolbox™
antennas.

When you use an Antenna Toolbox™ antenna in a Phased Array System Toolbox™
System Object™, the antenna response will be normalized by the maximum value of
the antenna output over all directions. The maximum value is obtained by finding the
maximum of the antenna pattern sampled every five degrees in azimuth and elevation.

Construct ULA of Crossed-Dipole Antennas from Phased Array System Toolbox

Start by creating a uniform linear array (ULA) of crossed-dipole antennas from Phased
Array System Toolbox. Crossed-dipole antennas are used to produce circularly-polarized
signals. In this case, set the operating frequency to 2 GHZ and draw the power pattern.
Use the pattern method of the phased.CrossedDipoleAntennaElement System
object™.

fc = 2.0e9;

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[500,2500]*1e6);

pattern(sCD,fc,[-180:180],0,...

 'Type','powerdb')

1 Antenna and Microphone Elements

1-30

The main axis of this antenna points along the x-axis.

Then, create an 11-element ULA array of crossed-dipole antennas. Specify the element
spacing to be 0.4 wavelengths. Taper the array using a Taylor window. Then, draw the
array pattern as a function of azimuth at 0 degrees elevation. Use the pattern method
of the phased.ULA System object.

c = physconst('LightSpeed');

elemspacing = 0.4*c/fc;

nElements = 11;

sULA1 = phased.ULA('Element',sCD,'NumElements',nElements,...

 'ElementSpacing',elemspacing,'Taper',taylorwin(nElements)');

pattern(sULA1,fc,[-180:180],0,'PropagationSpeed',c,...

 'Type','powerdb')

 Using Antenna Toolbox with Phased Array Systems

1-31

Construct ULA of Helix Antennas from Antenna Toolbox

Next, create a uniform linear array (ULA) using the helix antenna from Antenna
Toolbox. Helix antennas also produce circularly polarized radiation. Helix antennas are
created using the helix function.

First, specify a 4-turn helix antenna having a 28.0 mm radius and 1.2 mm width. The
TiltAxis and Tilt properties let you orient the antenna with respect to the local
coordinate system. In this example, orient the main response axis (MRA) along the x -
axis to coincide with the MRA of the cross-dipole main axis. By default, the MRA of the
antenna points in the z -direction. Rotate the MRA around the y -axis by 90 degrees.

radius = 0.028;

1 Antenna and Microphone Elements

1-32

width = 1.2e-3;

nturns = 4;

sHelix = helix('Radius',radius,'Width',width,'Turns',nturns,...

 'TiltAxis',[0,1,0],'Tilt',90);

You can view the shape of the helix antenna use the show function from Antenna
Toolbox.

show(sHelix)

Then, draw the azimuth antenna pattern at 0 degrees elevation at the operating
frequency of 2 GHz. Use the pattern function from Antenna Toolbox.

pattern(sHelix,fc,[-180:180],0,...

 Using Antenna Toolbox with Phased Array Systems

1-33

 'Type','powerdb')

Next, construct an 11-element tapered uniform linear array of helix antennas with
elements spaced at 0.4 wavelengths. Taper the array with a Taylor window. You can use
the same phased.ULA System object from Phased Array System Toolbox to create this
array.

sULA2 = phased.ULA('Element',sHelix,'NumElements',nElements,...

 'ElementSpacing',elemspacing,'Taper',taylorwin(nElements)');

Plot the array pattern as a function of azimuth using the ULA pattern method which has
the same syntax as the Antenna Toolbox pattern function.

pattern(sULA2,fc,[-180:180],0,'PropagationSpeed',c,...

1 Antenna and Microphone Elements

1-34

 'Type','powerdb')

Compare Patterns

Comparing the two array patterns shows that they are similar along the mainlobe. The
backlobe of the helix antenna array pattern is almost 15 dB smaller than that of the
crossed-dipole array. This is due to the presence of the ground plane of the helix antenna
which reduces backlobe transmission.

2

Array Geometries and Analysis

• “Uniform Linear Array” on page 2-2
• “Microphone ULA Array” on page 2-9
• “Uniform Rectangular Array” on page 2-12
• “Conformal Array” on page 2-16
• “Subarrays Within Arrays” on page 2-23
• “Phased Array Apps” on page 2-33

2 Array Geometries and Analysis

2-2

Uniform Linear Array

In this section...

“Support for Uniform Linear Arrays” on page 2-2
“Positions of Elements in Array” on page 2-2
“Identical Elements in Array” on page 2-3
“Response of Array Elements” on page 2-4
“Signal Delay Between Array Elements” on page 2-4
“Steering Vector” on page 2-5
“Array Response” on page 2-6
“Reception of Plane Wave Across Array” on page 2-7

Support for Uniform Linear Arrays

The uniform linear array (ULA) arranges identical sensor elements along a line in space
with uniform spacing. You can design a ULA with phased.ULA. When you use this object,
you must specify these aspects of the array:

• Sensor elements of the array
• Spacing between array elements
• Number of elements in the array

Positions of Elements in Array

Create and view a ULA with two isotropic antenna elements separated by 0.5 meters:

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);

viewArray(hula);

 Uniform Linear Array

2-3

You can return the coordinates of the array sensor elements in the form [x;y;z] by
using the getElementPosition method. See “Rectangular Coordinates” on page 10-2
for toolbox conventions.

sensorpos = getElementPosition(hula);

sensorpos is a 3-by-2 matrix with each column representing the position of a sensor
element. Note that the y-axis is the array axis. The positive x-axis is the array look
direction (0 degrees broadside). The elements are symmetric with the respect to the
phase center of the array.

Identical Elements in Array

The default element for a ULA is the phased.IsotropicAntennaElement object. You can
specify an alternative element by changing the Element property.

2 Array Geometries and Analysis

2-4

Response of Array Elements

To obtain the responses of your array elements, use the array’s step method.

% Construct antenna for the array elements

hant = phased.IsotropicAntennaElement(...

 'FrequencyRange',[3e8 1e9]);

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5,...

 'Element',hant);

% Obtain element responses at 1 GHz

freq = 1e9;

% for azimuth angles from -180:180

azangles = -180:180;

% elementresponses

elementresponses = step(hula,1e9,azangles);

elementresponses is a 2-by-361 matrix where each column contains the element
responses for the 361 azimuth angles. Because the elements of the ULA are isotropic
antennas, elementresponses is a matrix of ones.

Signal Delay Between Array Elements

To determine the signal delay in seconds between array elements, use
phased.ElementDelay. The incident waveform is assumed to satisfy the far-field
assumption.

The following example computes the delay between elements of a 4-element ULA for
a signal incident on the array from –90 degrees azimuth and zero degrees elevation.
The delays are computed with respect to the phase center of the array. By default,
phased.ElementDelay assumes that the incident waveform is an electromagnetic wave
propagating at the speed of light.

% Construct 4-element ULA using value-only syntax

hula = phased.ULA(4);

hdelay = phased.ElementDelay('SensorArray',hula);

tau = step(hdelay,[-90;0]);

tau is a 4-by-1 vector of delays with respect to the phase center of the array, which is
the origin of the local coordinate system [0;0;0]. See “Global and Local Coordinate
Systems” on page 10-21 for a description of global and local coordinate systems.
Negative delays indicate that the signal arrives at an element before reaching the phase
center of the array. Because the waveform arrives from an azimuth angle of –90 degrees,

 Uniform Linear Array

2-5

the signal impinges on the first and second elements of the ULA before it reaches the
phase center resulting in negative delays.

If the signal is incident on the array at 0 degrees broadside from a far-field source, the
signal illuminates all elements of the array simultaneously resulting in zero delay.

tau = step(hdelay,[0;0]);

If the incident signal is an acoustic pressure waveform propagating at the speed of sound,
you can calculate the element delays by specifying the PropagationSpeed property.

hdelay = phased.ElementDelay('SensorArray',hula,...

 'PropagationSpeed',340);

tau = step(hdelay,[90;0]);

In the preceding code, the propagation speed is set to 340 m/s, which is the approximate
speed of sound at sea level.

Steering Vector

The steering vector represents the relative phase shifts for the incident far-field
waveform across the array elements. You can determine these phase shifts with the
phased.SteeringVector object.

For a single carrier frequency, the steering vector for a ULA consisting of N elements is:

e

e

e

e

j f

j f

j f

j f N

-

-

-

-

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜

2

2

2

2

1

2

3

p t

p t

p t

p t

.

.

. ˜̃
˜̃

where τn denotes the time delay relative to the array phase center at the n-th array
element.

Compute the steering vector for a 4-element ULA with an operating frequency of 1 GHz.
Assume that the waveform is incident on the array from 45 degrees azimuth and 10
degrees elevation.

2 Array Geometries and Analysis

2-6

hula = phased.ULA(4);

hsv = phased.SteeringVector('SensorArray',hula);

sv = step(hsv,1e9,[45; 10]);

You can obtain the steering vector with the following equivalent code.

hdelay = phased.ElementDelay('SensorArray',hula);

tau = step(hdelay,[45;10]);

exp(-1j*2*pi*1e9*tau)

Array Response

To obtain the array response, which is a weighted-combination of the steering vector
elements for each incident angle, use phased.ArrayResponse.

Construct a two-element ULA with elements spaced at 0.5 m. Obtain the array’s
magnitude response (absolute value of the complex-valued array response) for azimuth
angles -180:180 and plot the normalized magnitude response in decibels.

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);

azangles = -180:180;

har = phased.ArrayResponse('SensorArray',hula);

resp = abs(step(har,1e9,azangles));

plot(azangles,mag2db((resp/max(resp))));

grid on;

title('Azimuth Cut at Zero Degrees Elevation');

xlabel('Azimuth Angle (degrees)');

 Uniform Linear Array

2-7

Visualize the array response using the plotResponse method. This example uses options
to create a 3-D plot of the response in u/v space; other plotting options are available.

figure;

plotResponse(hula,1e9,physconst('LightSpeed'),...

 'Format','UV','RespCut','3D')

Reception of Plane Wave Across Array

You can simulate the effects of phase shifts across your array using the collectPlaneWave
method.

The collectPlaneWave method modulates input signals by the element of the steering
vector corresponding to an array element. Stated differently, collectPlaneWave
accounts for phase shifts across elements in the array based on the angle of arrival.
However, collectPlaneWave does not account for the response of individual elements
in the array.

Simulate the reception of a 100-Hz sine wave modulated by a carrier frequency of 1 GHz
at a 4-element ULA. Assume the angle of arrival of the signal is [-90; 0].

hula = phased.ULA(4);

t = unigrid(0,0.001,0.01,'[)');

% signals must be column vectors

x = cos(2*pi*100*t)';

2 Array Geometries and Analysis

2-8

y = collectPlaneWave(hula,x,[-90;0],1e9,physconst('LightSpeed'));

The preceding code is equivalent to the following.

hsv = phased.SteeringVector('SensorArray',hula);

sv = step(hsv,1e9,[-90;0]);

y1 = x*sv.';

Related Examples
• “Microphone ULA Array” on page 2-9

 Microphone ULA Array

2-9

Microphone ULA Array

This example shows how to construct and visualize a four-element ULA with custom
cardioid microphone elements. Specify the polar pattern frequencies as 500 and 1000 Hz.

Create a microphone element with a cardioid response pattern. Use the default values of
the FrequencyVector property.

freq = [500 1000];

sMic = phased.CustomMicrophoneElement(...

 'PolarPatternFrequencies',freq);

sMic.PolarPattern= mag2db([...

 0.5+0.5*cosd(sMic.PolarPatternAngles);...

 0.6+0.4*cosd(sMic.PolarPatternAngles)]);

Plot the polar pattern of the microphone at 0.5 kHz and 1 kHz.

pattern(sMic,freq,[-180:180],0,'CoordinateSystem','polar','Type','powerdb',...

 'Normalize',true);

2 Array Geometries and Analysis

2-10

Construct a ULA of custom microphone elements.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5,...

 'Element',sMic);

Plot the response of the array at 0.5 kHz and 1 kHz.

pattern(sULA,freq,[-180:180],0,'CoordinateSystem','polar','Type','powerdb',...

 'Normalize',true,'PropagationSpeed',340.0);

 Microphone ULA Array

2-11

2 Array Geometries and Analysis

2-12

Uniform Rectangular Array

In this section...

“Support for Uniform Rectangular Arrays” on page 2-12
“Uniform Rectangular Array of Isotropic Antenna Elements” on page 2-12

Support for Uniform Rectangular Arrays

You can implement a uniform rectangular array (URA) with phased.URA. Array
elements are distributed in the yz-plane with the array look direction along the positive
x-axis. When you use phased.URA, you must specify these aspects of the array:

• Sensor elements of the array
• Number of rows and the spacing between them
• Number of columns and the spacing between them
• Geometry of the planar lattice, which can be rectangular or triangular

Uniform Rectangular Array of Isotropic Antenna Elements

This example shows you how to create a uniform rectangular array (URA) and obtain
information about the element positions, the array response, and inter-element time
delays. Then, simulate the reception of two sine waves coming from different directions.
Both signals have a 1GHz carrier frequency.

Create the URA and obtain the element positions

Create and view a six-element URA with two elements along the y-axis and three
elements along the z-axis. Use a rectangular lattice, with the default spacing of 0.5
meters along both the row and column dimensions of the array. Each element is an
isotropic antenna element, which is the default element type for a URA.

fc = 1e9;

sURA = phased.URA([3,2]);

viewArray(sURA)

pos = getElementPosition(sURA);

 Uniform Rectangular Array

2-13

The x-coordinate is zero for all elements of the array.

Compute the element delays

Calculate the element delays for signals arriving from +45 and -45 degrees azimuth and
0 degrees elevation.

sElemDelay = phased.ElementDelay('SensorArray',sURA);

ang = [45,-45];

tau = step(sElemDelay,ang);

The first column of tau contains the element delays for the signal incident on the array
from +45 degrees azimuth. The second column contains the delays for the signal arriving
from -45 degrees. The delays are equal in magnitude but opposite in sign, as expected.

2 Array Geometries and Analysis

2-14

Compute the received signals

The following code simulates the reception of two sinusoidal waves arriving from far
field sources. One signal is a 100-Hz sine wave arriving from 20 degrees azimuth and
10 degrees elevation. The second signal is a 300-Hz sine wave arriving from -30 degrees
azimuth and 5 degrees elevation.

t = linspace(0,1,1000);

x1 = cos(2*pi*100*t)';

x2 = cos(2*pi*300*t)';

ang1 = [20;10];

ang2 = [-30;5];

recsig = collectPlaneWave(sURA,[x1 x2],[ang1 ang2],fc);

Each column of recsig represents the received signals at the corresponding element of
the URA.

Plot the array response in 3D

You can plot the array response using the pattern method.

pattern(sURA,fc,[-180:180],[-90:90],'PropagationSpeed',physconst('LightSpeed'),...

 'CoordinateSystem','rectangular','Type','powerdb')

 Uniform Rectangular Array

2-15

2 Array Geometries and Analysis

2-16

Conformal Array

In this section...

“Support for Arrays with Custom Geometry” on page 2-16
“Create Default Conformal Array” on page 2-16
“Uniform Circular Array Created from Conformal Array” on page 2-17
“Custom Antenna Array” on page 2-19

Support for Arrays with Custom Geometry

The phased.ConformalArray object lets you model a phased array with arbitrary
geometry. For example, you can use phased.ConformalArray to design:

• A planar array with a nonrectangular geometry, such as a circular array
• An array with nonuniform geometry, such as a linear array with variable spacing
• A nonplanar array

When you use phased.ConformalArray, you must specify these aspects of the array:

• Sensor element of the array
• Element positions
• Direction normal to each array element

Create Default Conformal Array

To create a conformal array with default properties, use this command:

sConfArray = phased.ConformalArray

sConfArray =

 phased.ConformalArray with properties:

 Element: [1x1 phased.IsotropicAntennaElement]

 ElementPosition: [3x1 double]

 Conformal Array

2-17

 ElementNormal: [2x1 double]

 Taper: 1

This default conformal array consists of a single phased.LinearFMWaveform sensor
element located at the origin of the local coordinate system. The direction normal to the
sensor element is 0° azimuth and 0° elevation.

Uniform Circular Array Created from Conformal Array

This example shows how to construct a 60-element uniform circular array. In
constructing a uniform circular array, you can use either the phased.UCA or the
phased.ConformalArray System object™. The conformal array approach is more general
because it allows you to point the array elements in arbitrary directions. A UCA restricts
the array normals to lie in the plane of the array. This example illustrates how you can
use the phased.ConformalArray System object™ to create any other array shape. Assume
an operating frequency of 400 MHz. Tune the array by specifying the arclength between
the elements to be 0.5λ where λ is the wavelength corresponding to the operating
frequency. Array elements lie in the x-y-plane. Element normal directions are set to

 where is the azimuth angle of the array element.

Set the number of elements and the operating frequency of the array.

N = 60;

fc = 400e6;

Compute the element spacing in radians.

theta = 360/N;

thetarad = degtorad(theta);

Choose the radius so that the inter-element arclength is one-half wavelength.

arclength = 0.5*(physconst('LightSpeed')/fc);

radius = arclength/thetarad;

Compute the element azimuth angles. Azimuth angles must lie in the range (-180°,180°).

ang = (0:N-1)*theta;

ang(ang >= 180.0) = ang(ang >= 180.0) - 360.0;

sUCA = phased.ConformalArray;

2 Array Geometries and Analysis

2-18

sUCA.ElementPosition = [radius*cosd(ang);...

 radius*sind(ang);...

 zeros(1,N)];

sUCA.ElementNormal = [ang;zeros(1,N)];

Show the UCA array geometry.

viewArray(sUCA)

Plot the array response pattern at 1 GHz.

pattern(sUCA,1e9,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...

 'CoordinateSystem','polar','Type','powerdb','Normalize',true)

 Conformal Array

2-19

Custom Antenna Array

This example shows how to construct and visualize a custom-geometry array containing
antenna elements with a custom radiation pattern. The radiation pattern of each element
is constant over each azimuth angle and has a cosine pattern for the elevation angles.

Define the custom antenna element and plot its radiation pattern.

az = -180:180;

el = -90:90;

fc = 3e8;

elresp = cosd(el);

sCust = phased.CustomAntennaElement('AzimuthAngles',az,...

2 Array Geometries and Analysis

2-20

 'ElevationAngles',el,...

 'RadiationPattern',repmat(elresp',1,numel(az)));

pattern(sCust,3e8,0,el,'CoordinateSystem','polar','Type','powerdb',...

 'Normalize',true);

Define the locations and normal directions of the elements. All elements lie in the z-
plane. The elements are located at (1;0;0) , (0;1;0), and (0;-1;0) meters. The element
normal azimuth angles are 0°, 120°, and -120°, respectively. All normal elevation angles
are 0°.

xpos = [1 0 0];

ypos = [0 1 -1];

zpos = [0 0 0];

normal_az = [0 120 -120];

 Conformal Array

2-21

normal_el = [0 0 0];

Define a conformal array with those elements.

sConfArray = phased.ConformalArray('Element',sCust,...

 'ElementPosition',[xpos; ypos; zpos],...

 'ElementNormal',[normal_az; normal_el]);

Plot the positions and normal directions of the elements.

viewArray(sConfArray,'ShowNormals',true)

view(0,90)

pattern(sConfArray,fc,az,el,'CoordinateSystem','polar','Type','powerdb',...

2 Array Geometries and Analysis

2-22

 'Normalize',true,'PropagationSpeed',physconst('LightSpeed'))

 Subarrays Within Arrays

2-23

Subarrays Within Arrays

In this section...

“Definition of Subarrays” on page 2-23
“Benefits of Using Subarrays” on page 2-23
“Support for Subarrays Within Arrays” on page 2-23
“Rectangular Array Partitioned into Linear Subarrays” on page 2-24
“Linear Subarray Replicated to Form Rectangular Array” on page 2-28
“Linear Subarray Replicated in a Custom Grid” on page 2-30

Definition of Subarrays

In Phased Array System Toolbox™ software, a subarray is an accessible subset of array
elements. When you use an array that contains subarrays, you can access measurements
from the subarrays but not from the individual elements. Similarly, you can perform
processing at the subarray level but not at the level of the individual elements. As a
result, the system has fewer degrees of freedom than if you controlled the system at the
level of the individual elements.

Benefits of Using Subarrays

Radar applications often use subarrays because operations, such as phase shifting and
analog-to-digital conversion, are too expensive to implement for each element. It is less
expensive to group the elements of an array through hardware, thus creating subarrays
within the array. Grouping elements through hardware limits access to measurements
and processing to the subarray level.

Support for Subarrays Within Arrays

To work with subarrays, you must define the array and the subarrays within it. You can
either define the array first or begin with the subarray. Choose one of these approaches:

• Define one subarray, and then build a larger array by arranging copies of the
subarray. The subarray can be a ULA, URA, or conformal array. The copies are
identical, except for their location and orientation. You can arrange the copies
spatially in a grid or a custom layout.

2 Array Geometries and Analysis

2-24

When you use this approach, you build the large array by creating a
phased.ReplicatedSubarray System object. This object stores information about the
subarray and how the copies of it are arranged to form the larger array.

• Define an array, and then partition it into subarrays. The array can be a ULA, URA,
or conformal array. The subarrays do not need to be identical. A given array element
can be in more than one subarray, leading to overlapped subarrays.

When you use this approach, you partition your array by creating a
phased.PartitionedArray System object. This object stores information about the
array and its subarray structure.

After you create a phased.ReplicatedSubarray or phased.PartitionedArray
object, you can use it to perform beamforming, steering, or other operations. To do so,
specify your object as the value of the SensorArray or Sensor property in objects that
have such a property and that support subarrays. Objects that support subarrays in their
SensorArray or Sensor property include:

• phased.AngleDopplerResponse

• phased.ArrayGain

• phased.ArrayResponse

• phased.Collector

• phased.ConstantGammaClutter

• phased.MVDRBeamformer

• phased.PhaseShiftBeamformer

• phased.Radiator

• phased.STAPSMIBeamformer

• phased.SteeringVector

• phased.SubbandPhaseShiftBeamformer

• phased.WidebandCollector

Rectangular Array Partitioned into Linear Subarrays

This example shows how to set up a rectangular array containing linear subarrays. The
example also finds the phase centers of the subarrays.

 Subarrays Within Arrays

2-25

Create a 2-by-3 rectangular array.

sURA = phased.URA('Size',[2 3]);

Plot the positions of the array elements in the yz-plane (all x-coordinates are zero.)
Include labels that indicate the numbering of the elements. The numbering is important
for selecting which elements are included in each subarray.

viewArray(sURA,'ShowIndex','All')

Create and view an array consisting of three 2-element linear subarrays each parallel to
the z-axis. Use the indices from the plot to form the matrix for the SubarraySelection
property. The getSubarrayPosition method returns the phase centers of the three
subarrays.

2 Array Geometries and Analysis

2-26

subarray1 = [1 1 0 0 0 0; 0 0 1 1 0 0; 0 0 0 0 1 1];

sPA1 = phased.PartitionedArray('Array',sURA,...

 'SubarraySelection',subarray1);

viewArray(sPA1)

subarraypos1 = getSubarrayPosition(sPA1)

subarraypos1 =

 0 0 0

 -0.5000 0 0.5000

 0 0 0

 Subarrays Within Arrays

2-27

Create and view another array consisting of two 3-element linear subarrays parallel to
the y-axis. Using the getSubarrayPosition method, find the phase centers of the two
subarrays.

subarray2 = [0 1 0 1 0 1; 1 0 1 0 1 0];

sPA2 = phased.PartitionedArray('Array',sURA,...

 'SubarraySelection',subarray2);

viewArray(sPA2)

subarraypos2 = getSubarrayPosition(sPA2)

subarraypos2 =

 0 0

 0 0

 -0.2500 0.2500

2 Array Geometries and Analysis

2-28

Linear Subarray Replicated to Form Rectangular Array

This example shows how to arrange copies of a linear subarray to form a rectangular
array.

Create a 4-element linear array parallel to the y-axis.

sULA = phased.ULA('NumElements',4);

Create a rectangular array by arranging two copies of the linear array.

sRepSub = phased.ReplicatedSubarray('Subarray',sULA,'GridSize',[2 1]);

 Subarrays Within Arrays

2-29

Plot the positions of the array elements and the phase centers of the subarrays. The
elements lie in the yz-plane because all the x-coordinates are zero.

viewArray(sRepSub);

hold on;

subarraypos = getSubarrayPosition(sRepSub);

sx = subarraypos(1,:);

sy = subarraypos(2,:);

sz = subarraypos(3,:);

scatter3(sx,sy,sz,'r*')

hold off

2 Array Geometries and Analysis

2-30

Linear Subarray Replicated in a Custom Grid

This example shows how to arrange copies of a linear subarray in a triangular layout.

Create a 4-element linear array.

sCosAnt = phased.CosineAntennaElement('CosinePower',1);

sULA = phased.ULA('NumElements',4,'Element',sCosAnt);

Create a larger array by arranging three copies of the linear array. Define the phase
centers and normal directions of the three copies explicitly.

vertex_ang = [60 180 -60];

 Subarrays Within Arrays

2-31

vertex = 2*[cosd(vertex_ang); sind(vertex_ang); zeros(1,3)];

subarray_pos = 1/2*[...

 (vertex(:,1)+vertex(:,2)) ...

 (vertex(:,2)+vertex(:,3)) ...

 (vertex(:,3)+vertex(:,1))];

sRepSub = phased.ReplicatedSubarray('Subarray',sULA,...

 'Layout','Custom',...

 'SubarrayPosition',subarray_pos,...

 'SubarrayNormal',[120 0;-120 0;0 0].');

Plot the positions of the array elements and the phase centers of the subarrays. The plot
is in the xy-plane because all the z-coordinates are zero.

viewArray(sRepSub,'ShowSubarray',[])

hold on

scatter3(subarray_pos(1,:),subarray_pos(2,:),...

 subarray_pos(3,:),'r*')

hold off

2 Array Geometries and Analysis

2-32

Related Examples
• Subarrays in Phased Array Antennas

../examples/subarrays-in-phased-array-antennas.html

 Phased Array Apps

2-33

Phased Array Apps

Plot Array Directivity Using Sensor Array Analyzer App

The sensorArrayAnalyzer is a Matlab™ App that lets you examine important
properties of a phased array such as shape and directivity.

Open sensorArrayAnalyzer App

When you type sensorArrayAnalyzer from the command line or select the app
from the App Toolstrip, an interactive window opens. The default window shows the
geometry of a 4-element uniform linear array. You can then select various options to
analyze different arrays, other element types, geometry, and directivity.

sensorArrayAnalyzer;

2 Array Geometries and Analysis

2-34

Create 3D Directivity Plot of 4-by-4 URA

As an example, use the app to create a 4-by-4 uniform rectangular array of cosine
antenna elements and then show the array directivity. Space the elements 0.4
wavelengths apart.

1 Set the Array Type to Uniform Rectangular
2 Set the Element Type to Cosine Antenna

 Phased Array Apps

2-35

3 Set the Size of the arry to [4 4]
4 Set the Element Spacing to [0.4 0.4] wavelengths
5 Make sure to select the spacing units to wavelength
6 Select the Steering check box
7 Set the Steer Angle to [-30,0] to show a steered array
8 Choose the type of View as 3D Array Directivity
9 Choose the view Option as Polar to get a polar diagram
10 Select the Show Geometry check box to show the array shape as well

Then, you will see a plot of array directivity similar to this.

filenm = fullfile(matlabroot,'examples','phased','SensorArrayAnalyzerAppExample_02.png');

im = imread(filenm);

figure('Position',[315 160 906 690])

image(im)

axis off

set(gca,'Position',[0.078 0.077 0.845 0.896])

2 Array Geometries and Analysis

2-36

3

Signal Radiation and Collection

• “Signal Radiation” on page 3-2
• “Signal Collection” on page 3-4

3 Signal Radiation and Collection

3-2

Signal Radiation

In this section...

“Support for Modeling Signal Radiation” on page 3-2
“Radiate Signal with Uniform Linear Array” on page 3-2

Support for Modeling Signal Radiation

You can use the phased.Radiator and phased.Collector objects to model narrowband
signal radiation and collection with an array. The array can be a single microphone or
antenna element, or an array of sensor elements.

To radiate a signal from a sensor array, use phased.Radiator. When you use this object,
you must specify these aspects of the radiator:

• Whether the output of all sensor elements is combined
• Operating frequency of the array
• Propagation speed of the wave
• Sensor (single element) or sensor array
• Whether to apply weights to signals radiated by different elements in the array. If you

want to apply weights, you specify them when you call the step method.

Radiate Signal with Uniform Linear Array

Construct a radiator using a two-element ULA with elements spaced 0.5 meters apart
(the default ULA). The operating frequency is 300 MHz, the propagation speed is the
speed of light, and the element outputs are combined to simulate the far field radiation
pattern.

sULA = phased.ULA('NumElements',2,'ElementSpacing',0.5);

sRad = phased.Radiator('Sensor',sULA,...

 'OperatingFrequency',300e6,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'CombineRadiatedSignals',true);

Create a signal to radiate and propagate to the far field at an angle of (45°,0°) .

x = [1 -1 1 -1]';

 Signal Radiation

3-3

y = step(sRad,x,[45;0]);

The far field signal results from multiplying the signal by the array pattern. The array
pattern is the product of the array element pattern and the array factor. For a uniform
linear array, the array factor is the superposition of elements in the steering vector
phased.SteeringVector

The following code produces an identical far-field signal by explicitly using the array
factor.

sULA = phased.ULA('NumElements',2,'ElementSpacing',0.5);

sSV = phased.SteeringVector('SensorArray',sULA,...

 'IncludeElementResponse',true);

sv = step(sSV,300e6,[45;0]);

y1 = x*sum(sv);

Compare y1 to y.

disp(y1-y)

 0

 0

 0

 0

3 Signal Radiation and Collection

3-4

Signal Collection

In this section...

“Support for Modeling Signal Collection” on page 3-4
“Narrowband Collector for Uniform Linear Array” on page 3-5
“Narrowband Collector for a Single Antenna Element” on page 3-6
“Wideband Signal Collection” on page 3-7

Support for Modeling Signal Collection

To model the collection of a signal with a sensor element or sensor array, you can use
the phased.Collector or phased.WideBandCollector. Both collector objects assume that
incident signals have propagated to the location of the array elements, but have not
been received by the array. In other words, the collector objects do not model the actual
reception by the array. See “Receiver Preamp” on page 4-34 for signal effects related
to the gain and internal noise of the array’s receiver.

In many array processing applications, the ratio of the signal’s bandwidth to the
carrier frequency is small. Expressed as a percentage, this ratio does not exceed a few
percent. Examples include radar applications where a pulse waveform is modulated
by a carrier frequency in the microwave range. These are narrowband signals. For
narrowband signals, you can express the steering vector as a function of a single
frequency, the carrier frequency. For narrowband signals, the phased.Collector object
is appropriate.

In other applications, the narrowband assumption is not justified. In many acoustic
and sonar applications, the wave impinging on the array is a pressure wave that
is unmodulated. It is not possible to express the steering vector as a function
of a single frequency. In these cases, the subband approach implemented in
phased.WidebandCollector is appropriate. The wideband collector decomposes the input
into subbands and computes the steering vector for each subband.

When you use the narrowband collector, phased.Collector, you must specify these aspects
of the collector:

• Operating frequency of the array
• Propagation speed of the wave

 Signal Collection

3-5

• Sensor (single element) or sensor array
• Type of incoming wave. Choices are 'Plane' and 'Unspecified'. If you select

'Plane', the input signals are multiple plane waves impinging on the entire array.
Each plane wave is received by all collecting elements. If you select 'Unspecified',
the input signal are individual waves impinging on individual sensors.

• Whether to apply weights to signals collected by different elements in the array. If
you want to apply weights, you specify them when you call the step method.

When you use the wideband collector, phased.WidebandCollector, you must specify these
aspects of the collector:

• Carrier frequency
• Whether the signal is demodulated to the baseband
• Operating frequency of the array
• Propagation speed of the wave
• Sampling rate
• Sensor (single element) or sensor array
• Type of incoming wave. Choices are 'Plane' and 'Unspecified'. If you select

'Plane', the input signals are multiple plane waves impinging on the entire array.
Each plane wave is received by all collecting elements. If you select 'Unspecified',
the input signal are individual waves impinging on individual sensors.

• Whether to apply weights to signals collected by different elements in the array. If
you want to apply weights, you specify them when you call the step method.

Narrowband Collector for Uniform Linear Array

This example shows how to construct a narrowband collector that models a plane wave
impinging on a two-element uniform linear array. The array has an element spacing of
0.5 m (default ULA). The operating frequency of the array is 300 MHz.

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);

hcol = phased.Collector('Sensor',hula,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',3e8,'Wavefront','Plane')

% create signal to create

x =[1 -1 1 -1]';

% simulate reception from an angle of [45;0]

y = step(hcol,x,[45;0]);

3 Signal Radiation and Collection

3-6

In the preceding case, the collector object multiplies the input signal, x, by the
corresponding element of the steering vector for the two-element ULA. The following code
produces the response in an equivalent manner.

% default ULA

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);

% Construct steering vector

hsv = phased.SteeringVector('SensorArray',hula);

sv = step(hsv,3e8,[45;0]);

x =[1 -1 1 -1]';

y1 = x*sv.';

% compare y1 to y

Narrowband Collector for a Single Antenna Element

The Sensor property of phased.Collector can consist of a single antenna element. In
this example, create a custom antenna element using phased.CustomAntennaElement.
The antenna element has a cosine response over elevation angles from [–90,90] degrees.
Plot the polar pattern response of the antenna at 1 GHz using an elevation cut at zero
degrees azimuth. Determine the antenna voltage response at 0 degrees azimuth and 45
degrees elevation.

ha = phased.CustomAntennaElement;

ha.AzimuthAngles = -180:180;

ha.ElevationAngles = -90:90;

ha.RadiationPattern = mag2db(...

 repmat(cosd(ha.ElevationAngles)',1,numel(ha.AzimuthAngles)));

plotResponse(ha,1e9,'Format','polar','RespCut','El');

resp = step(ha,1e9,[0; 45])

 Signal Collection

3-7

The antenna voltage response at zero degrees azimuth and 45 degrees elevation is
cosd(45) as expected.

Assume a narrowband sinusoidal input incident on the antenna element from 0 degrees
azimuth and 45 degrees elevation. Determine the signal collected at the element.

hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9)

x =[1 -1 1 -1]';

y = step(hc,x,[0; 45]);

% equivalent to y1 = x*cosd(45);

Wideband Signal Collection

This example shows how to simulate the reception of a wideband acoustic signal by a
single omnidirectional microphone element.
x = randn(10,1);

hmic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20e3],'BackBaffled',true)

hwb = phased.WidebandCollector('Sensor',hmic,...

 'PropagationSpeed',340,'SampleRate',50e3,...

 'ModulatedInput',false)

y = step(hwb,x,[30;10]);

4

Waveforms, Transmitter, and Receiver

• “Rectangular Pulse Waveforms” on page 4-2
• “Linear Frequency Modulated Pulse Waveforms” on page 4-6
• “Stepped FM Pulse Waveforms” on page 4-14
• “FMCW Waveforms” on page 4-16
• “Phase-Coded Waveforms” on page 4-19
• “Waveforms with Staggered PRFs” on page 4-23
• “Plot Spectrogram Using Radar Waveform Analyzer App” on page 4-25
• “Transmitter” on page 4-28
• “Receiver Preamp” on page 4-34
• “Radar Equation” on page 4-40
• “Display Vertical Coverage Diagram” on page 4-44
• “Compute Peak Power Using Radar Equation Calculator App” on page 4-45

4 Waveforms, Transmitter, and Receiver

4-2

Rectangular Pulse Waveforms
In this section...

“Definition of Rectangular Pulse Waveform” on page 4-2
“How to Create Rectangular Pulse Waveforms” on page 4-2
“Rectangular Waveform Plot” on page 4-2
“Pulses of Rectangular Waveform” on page 4-4

Definition of Rectangular Pulse Waveform

Define the following function of time:

a t
t

() =
£ £Ï

Ì
Ó

1 0

0

t

otherwise

Assume that a radar transmits a signal of the form:

x t a t t
c

() ()sin()= w

where ωc denotes the carrier frequency. Note that a(t) represents an on-off rectangular
amplitude modulation of the carrier frequency. After demodulation, the complex envelope
of x(t) is the real-valued rectangular pulse a(t) of duration τ seconds.

How to Create Rectangular Pulse Waveforms

To create a rectangular pulse waveform, use phased.RectangularWaveform. You can
customize certain characteristics of the waveform, including:

• Sampling rate
• Pulse duration
• Pulse repetition frequency
• Number of samples or pulses in each vector that represents the waveform

Rectangular Waveform Plot

This example shows how to create a rectangular pulse waveform variable using
phased.RectangularWaveform . The example also plots the pulse and finds the
bandwidth of the pulse.

 Rectangular Pulse Waveforms

4-3

Construct a rectangular pulse waveform with a duration of 50 μs, a sample rate of 1
MHz, and a pulse repetition frequency (PRF) of 10 kHz.

sRect = phased.RectangularWaveform('SampleRate',1e6,...

 'PulseWidth',50e-6,'PRF',10e3);

Plot a single rectangular pulse by calling plot directly on the rectangular waveform
variable. plot is a method of phased.RectangularWaveform. This method produces
an annotated graph of your pulse waveform.

plot(sRect)

Find the bandwidth of the rectangular pulse.

4 Waveforms, Transmitter, and Receiver

4-4

bw = bandwidth(sRect)

bw =

 20000

The bandwidth, bw, of a rectangular pulse in hertz is approximately the reciprocal of the
pulse duration 1/sRect.PulseWidth.

Pulses of Rectangular Waveform

This example shows how to create rectangular pulse waveform signals having different
durations. The example plots two pulses of each waveform.

Create a rectangular pulse with a duration of 100 μs and a PRF of 1 kHz. Set the number
of pulses in the output equal to two.

sRect = phased.RectangularWaveform('PulseWidth',100e-6,...

 'PRF',1e3,'OutputFormat','Pulses','NumPulses',2);

Make a copy of your rectangular pulse and change the pulse width in your original
waveform to 10 μs.

sRect1 = clone(sRect);

sRect.PulseWidth = 10e-6;

sRect and sRect1 now specify different rectangular pulses because you changed the
pulse width of sRect.

Use the step method to return two pulses of your rectangular pulse waveforms.

y = step(sRect);

y1 = step(sRect1);

Plot the real part of the waveforms.

totaldur = 2*1/sRect.PRF;

totnumsamp = totaldur*sRect.SampleRate;

t = unigrid(0,1/sRect.SampleRate,totaldur,'[)');

subplot(2,1,1)

plot(t.*1000,real(y)); axis([0 totaldur*1e3 0 1.5])

title('Two 10-\musec duration pulses (PRF = 1 kHz)')

 Rectangular Pulse Waveforms

4-5

set(gca,'XTick',0:0.2:totaldur*1e3)

subplot(2,1,2)

plot(t.*1000,real(y1)); axis([0 totaldur*1e3 0 1.5])

xlabel('Milliseconds')

title('Two 100-\musec duration pulses (PRF = 1 kHz)')

set(gca,'XTick',0:0.2:totaldur*1e3)

4 Waveforms, Transmitter, and Receiver

4-6

Linear Frequency Modulated Pulse Waveforms

In this section...

“Benefits of Using Linear FM Pulse Waveform” on page 4-6
“Definition of Linear FM Pulse Waveform” on page 4-6
“How to Create Linear FM Pulse Waveforms” on page 4-7
“Configure Linear FM Pulse Waveform” on page 4-8
“Linear FM Pulse Waveform Plot” on page 4-8
“Ambiguity Function of Linear FM Waveform” on page 4-10
“Compare Autocorrelation for Rectangular and Linear FM Waveforms” on page 4-12

Benefits of Using Linear FM Pulse Waveform

Increasing the duration of a transmitted pulse increases its energy and improves target
detection capability. Conversely, reducing the duration of a pulse improves the range
resolution of the radar.

For a rectangular pulse, the duration of the transmitted pulse and the processed echo are
effectively the same. Therefore, the range resolution of the radar and the target detection
capability are coupled in an inverse relationship.

Pulse compression techniques enable you to decouple the duration of the pulse from its
energy by effectively creating different durations for the transmitted pulse and processed
echo. Using a linear frequency modulated pulse waveform is a popular choice for pulse
compression.

Definition of Linear FM Pulse Waveform

The complex envelope of a linear FM pulse waveform with increasing instantaneous
frequency is:

%x t a t e j t
() ()

(/)= p b t 2

where β is the bandwidth and τ is the pulse duration.

If you denote the phase by Θ(t), the instantaneous frequency is:

 Linear Frequency Modulated Pulse Waveforms

4-7

1

2p

b

t

d t

dt
t

Q()
=

which is a linear function of t with slope equal to β/τ.

The complex envelope of a linear FM pulse waveform with decreasing instantaneous
frequency is:

%x t a t e j t t
() ()

/ ()= - -pb t t2
2

Pulse compression waveforms have a time-bandwidth product, βτ, greater than 1.

How to Create Linear FM Pulse Waveforms

To create a linear FM pulse waveform, use phased.LinearFMWaveform. You can
customize certain characteristics of the waveform, including:

• Sample rate
• Duration of a single pulse
• Pulse repetition frequency
• Sweep bandwidth
• Sweep direction (up or down), corresponding to increasing and decreasing

instantaneous frequency
• Envelope, which describes the amplitude modulation of the pulse waveform. The

envelope can be rectangular or Gaussian.

• The rectangular envelope is as follows, where τ is the pulse duration.

a t
t

() =
£ £Ï

Ì
Ó

1 0

0

t

otherwise

• The Gaussian envelope is:

a t e t
t

()
/

= ≥
-

2 2

0
t

• Number of samples or pulses in each vector that represents the waveform

4 Waveforms, Transmitter, and Receiver

4-8

Configure Linear FM Pulse Waveform

This example shows how to create a linear FM pulse waveform using
phased.LinearFMWaveform. The example illustrates specific property settings.

Create a linear FM pulse with a sample rate of 1 MHz, a pulse duration of 50 μs with an
increasing instantaneous frequency, and a sweep bandwidth of 100 kHz. The amplitude
modulation is rectangular.

sLFM = phased.LinearFMWaveform('SampleRate',1e6,...

 'PulseWidth',5e-5,'PRF',1e4,...

 'SweepBandwidth',1e5,'SweepDirection','Up',...

 'Envelope','Rectangular',...

 'OutputFormat','Pulses','NumPulses',1);

Linear FM Pulse Waveform Plot

This example shows how to design a linear FM (LFM) pulse waveform. The LFM
waveform has a duration of 100 microseconds, a bandwidth of 200 kHz, and a PRF of
4 kHz. Use the default values for the other properties. Compute the time-bandwidth
product. Plot the real part of the waveform and plot one full pulse repetition interval.

sLFM = phased.LinearFMWaveform('PulseWidth',100e-6,...

 'SweepBandwidth',2e5,'PRF',4000);

Display the time-bandwidth product of the FM sweep.

disp(sLFM.PulseWidth*sLFM.SweepBandwidth)

 20

Plot the real part of the waveform.

plot(sLFM)

 Linear Frequency Modulated Pulse Waveforms

4-9

Use the step method to obtain one full repetition interval of the signal. Plot the real and
imaginary parts.

y = step(sLFM);

t = unigrid(0,1/sLFM.SampleRate,1/sLFM.PRF,'[)');

figure

subplot(2,1,1)

plot(t,real(y))

axis tight

title('Real Part')

subplot(2,1,2)

plot(t,imag(y))

xlabel('Time (s)')

title('Imaginary Part')

4 Waveforms, Transmitter, and Receiver

4-10

axis tight

Ambiguity Function of Linear FM Waveform

This example shows how to plot the ambiguity function of the linear FM pulse waveform.

Define and set up the linear FM waveform.

sLFM = phased.LinearFMWaveform('PulseWidth',100e-6,...

 'SweepBandwidth',2e5,'PRF',1e3);

Generate samples of the waveform.

wav = step(sLFM);

 Linear Frequency Modulated Pulse Waveforms

4-11

Create a 3-D surface plot of the ambiguity function for the waveform.

[afmag_lfm,delay_lfm,doppler_lfm] = ambgfun(wav,...

 sLFM.SampleRate,sLFM.PRF);

surf(delay_lfm*1e6,doppler_lfm/1e3,afmag_lfm,...

 'LineStyle','none')

axis tight

grid on

view([140,35])

colorbar

xlabel('Delay \tau (\mus)')

ylabel('Doppler f_d (kHz)')

title('Linear FM Pulse Waveform Ambiguity Function')

4 Waveforms, Transmitter, and Receiver

4-12

The surface has a narrow ridge that is slightly tilted. The tilt indicates better resolution
in the zero delay cut.

Compare Autocorrelation for Rectangular and Linear FM Waveforms

This example shows how to compute and plot the ambiguity function magnitudes for
a rectangular and linear FM pulse waveform. The zero Doppler cut (magnitudes of
the autocorrelation sequences) illustrates pulse compression in the linear FM pulse
waveform.

Create a rectangular waveform and a linear FM pulse waveform having the same
duration and PRF. Generate samples of each waveform.

sRect = phased.RectangularWaveform('PRF',20e3);

sLFM = phased.LinearFMWaveform('PRF',20e3);

xrect = step(sRect);

xfm = step(sLFM);

Compute the ambiguity function magnitudes for each waveform.

[ambrect,delay] = ambgfun(xrect,sRect.SampleRate,sRect.PRF,...

 'Cut','Doppler');

ambfm = ambgfun(xfm,sLFM.SampleRate,sLFM.PRF,...

 'Cut','Doppler');

Plot the ambiguity function magnitudes.

subplot(211)

stem(delay,ambrect)

title('Autocorrelation of Rectangular Pulse')

axis([-5e-5 5e-5 0 1])

set(gca,'XTick',1e-5*(-5:5))

subplot(212)

stem(delay,ambfm)

xlabel('Delay (seconds)')

title('Autocorrelation of Linear FM Pulse')

axis([-5e-5 5e-5 0 1])

set(gca,'XTick',1e-5*(-5:5))

 Linear Frequency Modulated Pulse Waveforms

4-13

Related Examples
• “Waveform Analysis Using the Ambiguity Function”

4 Waveforms, Transmitter, and Receiver

4-14

Stepped FM Pulse Waveforms

A stepped frequency pulse waveform consists of a series of N narrowband pulses. The
frequency is increased from step to step by a fixed amount, Δf, in Hz.

Similar to linear FM pulse waveforms, stepped frequency waveforms are a popular pulse
compression technique. Using this approach enables you to increase the range resolution
of the radar without sacrificing target detection capability.

To create a stepped FM pulse waveform, use phased.SteppedFMWaveform.

The stepped frequency pulse waveform has the following modifiable properties:

• SampleRate — Sampling rate in Hz
• PulseWidth — Pulse duration in seconds
• PRF — Pulse repetition frequency in Hz
• FrequencyStep — Frequency step in Hz
• NumSteps — Number of frequency steps
• OutputFormat — Output format in pulses or samples
• NumSamples — Number of samples in the output when the OutputFormat property

is 'Samples'
• NumPulses — Number of pulses in the output when the OutputFormat property is

'Pulses'

Enter the following to construct a stepped FM pulse waveform with a pulse duration
(width) of 50 μs, a PRF of 10 kHz, and five steps of 20 kHz. The sampling rate is 1 MHz.
By default the OutputFormat property is equal to 'Pulses' and the number of pulses
in the output is equal to one. The example uses the bandwidth method to demonstrate
that the bandwidth of the stepped FM pulse waveform is the product of the frequency
step and the number of steps Obj.FrequencyStep*Obj.Numsteps.

hs = phased.SteppedFMWaveform('SampleRate',1e6,...

 'PulseWidth',5e-5,'PRF',1e4,...

 'FrequencyStep',2e4,'NumSteps',5);

bandwidth(hs)

% equal to hs.NumSteps*hs.FrequencyStep

Because the OutputFormat property is set to 'Pulses' and the NumPulses property is
set to 1, calling the step method returns one pulse repetition interval (PRI). The pulse

 Stepped FM Pulse Waveforms

4-15

duration within that interval is equal to the PulseWidth property. The remainder of the
PRI consists of zeros.

The initial pulse has a frequency of zero, and is a DC pulse. With the NumPulses
property set to 1, each time you use step, the frequency of the narrowband pulse
increments by the value of the FrequencyStep property. If you call step more times
than the value of the NumSteps property, the process repeats, starting over with the DC
pulse.

Use step to return successively higher frequency pulses. Plot the pulses one by one in
the same figure window. Pause the loop to visualize the increment in frequency with each
successive call to step. Make an additional call to step to demonstrate that the process
starts over with the DC (rectangular) pulse.

t = unigrid(0,1/hs.SampleRate,1/hs.PRF,'[)');

for i = 1:hs.NumSteps

 plot(t,real(step(hs)));

 pause(0.5);

 axis tight;

end

% calling step again starts over with a DC pulse

y = step(hs);

The next figure shows the plot in the final iteration of the loop.

4 Waveforms, Transmitter, and Receiver

4-16

FMCW Waveforms
In this section...

“Benefits of Using FMCW Waveform” on page 4-16
“How to Create FMCW Waveforms” on page 4-16
“Double Triangular Sweep” on page 4-17

Benefits of Using FMCW Waveform

Radar systems that use frequency-modulated, continuous-wave (FMCW) waveforms are
typically smaller and less expensive to manufacture than pulsed radar systems. FMCW
waveforms can estimate the target range effectively, whereas the simplest continuous-
wave waveforms cannot.

FMCW waveforms are common in automotive radar systems and ground-penetrating
radar systems.

How to Create FMCW Waveforms

To create an FMCW waveform, use phased.FMCWWaveform. You can customize certain
characteristics of the waveform, including:

• Sample rate.
• Period and bandwidth of the FM sweep. These quantities can cycle through multiple

values during your simulation.

Tip To find targets up to a given maximum range, r, you can typically use a sweep
period of approximately 5*range2time(r) or 6*range2time(r). To achieve a
range resolution of delta_r, use a bandwidth of at least range2bw(delta_r).

• Sweep shape. This shape can be sawtooth (up or down) or triangular.

Tip For moving targets, you can use a triangular sweep to resolve ambiguity between
range and Doppler.

phased.FMCWWaveform assumes that all frequency modulations are linear. For
triangular sweeps, the slope of the down sweep is the opposite of the slope of the up
sweep.

 FMCW Waveforms

4-17

Double Triangular Sweep

This example shows how to sample an FMCW waveform with a double triangular sweep
in which the two sweeps have different slopes. Then, the example plots a spectrogram.

Create an FMCW waveform object for which the SweepTime and SweepBandwidth
properties are vectors of length two. For each period, the waveform alternates between
the pairs of corresponding sweep time and bandwidth values.

st = [1e-3 1.1e-3];

bw = [1e5 9e4];

sFMCW = phased.FMCWWaveform('SweepTime',st,...

 'SweepBandwidth',bw,'SweepDirection','Triangle',...

 'SweepInterval','Symmetric','SampleRate',2e5,...

 'NumSweeps',4);

Compute samples from four sweeps (two periods). In a triangular sweep, each period
consists of an up sweep and down sweep.

x = step(sFMCW);

Plot a spectrogram.

[S,F,T] = spectrogram(x,32,16,32,sFMCW.SampleRate);

image(T,fftshift(F),fftshift(mag2db(abs(S))))

xlabel('Time (sec)')

ylabel('Frequency (Hz)')

4 Waveforms, Transmitter, and Receiver

4-18

 Phase-Coded Waveforms

4-19

Phase-Coded Waveforms

In this section...

“When to Use Phase-Coded Waveforms” on page 4-19
“How to Create Phase-Coded Waveforms” on page 4-19
“Basic Radar Using Phase-Coded Waveform” on page 4-20

When to Use Phase-Coded Waveforms

Situations in which you might use a phase-coded waveform instead of another type of
waveform include:

• When a rectangular pulse cannot provide both of these characteristics:

• Short enough pulse for good range resolution
• Enough energy in the signal to detect the reflected echo at the receiver

• When two or more radar systems are close to each other and you want to reduce
interference among them.

• When digital processing suggests using a waveform with a discrete set of phases. For
example, a Barker-coded waveform is a bi-phase waveform.

Conversely, you might use another waveform instead of a phase-coded waveform in the
following situations:

• When you need to detect or track high-speed targets

Phase-coded waveforms tend to perform poorly when signals have Doppler shifts.
• When the hardware requirements for phase-coded waveforms are prohibitively

expensive

How to Create Phase-Coded Waveforms

To create a phase-coded waveform, use phased.PhaseCodedWaveform. You can
customize certain characteristics of the waveform, including:

• Type of phase code
• Number of chips
• Chip width

4 Waveforms, Transmitter, and Receiver

4-20

• Sample rate
• Pulse repetition frequency (PRF)
• Sequence index (Zadoff-Chu code only)

After you create a phased.PhaseCodedWaveform object, you can plot the waveform
using the plot method of this class. You can also generate samples of the waveform
using the step method.

For a full list of properties and methods, see the phased.PhaseCodedWaveform reference
page.

Basic Radar Using Phase-Coded Waveform

In the example in “End-to-End Radar System”, you can use a phase-coded waveform in
place of a rectangular waveform. To do so:

1 Replace the definition of hwav with the following definition.

hwav = phased.PhaseCodedWaveform('Code','Frank','NumChips',4,...

 'ChipWidth',1e-6,'PRF',5e3,'OutputFormat','Pulses',...

 'NumPulses',1);

2 Redefine the pulse width, tau, based on the properties of the new waveform.

tau = hwav.ChipWidth * hwav.NumChips;

For convenience, the complete code appears here. For a detailed explanation of the code,
see the original example, “End-to-End Radar System”.

hwav = phased.PhaseCodedWaveform('Code','Frank','NumChips',4,...

 'ChipWidth',1e-6,'PRF',5e3,'OutputFormat','Pulses',...

 'NumPulses',1);

hant = phased.IsotropicAntennaElement('FrequencyRange',...

 [1e9 10e9]);

htgt = phased.RadarTarget('Model','Nonfluctuating',...

 'MeanRCS',0.5,'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',4e9);

htxplat = phased.Platform('InitialPosition',[0;0;0],'Velocity',[0;0;0]);

htgtplat = phased.Platform('InitialPosition',[7000; 5000; 0],...

 'Velocity',[-15;-10;0]);

 Phase-Coded Waveforms

4-21

[tgtrng,tgtang] = rangeangle(htgtplat.InitialPosition,...

 htxplat.InitialPosition);

Pd = 0.9;

Pfa = 1e-6;

numpulses = 10;

SNR = albersheim(Pd,Pfa,10);

maxrange = 1.5e4;

lambda = physconst('LightSpeed')/4e9;

tau = hwav.ChipWidth * hwav.NumChips;

Pt = radareqpow(lambda,maxrange,SNR,tau,'RCS',0.5,'Gain',20);

htx = phased.Transmitter('PeakPower',50e3,'Gain',20,...

 'LossFactor',0,'InUseOutputPort',true,...

 'CoherentOnTransmit',true);

hrad = phased.Radiator('Sensor',hant,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',4e9);

hcol = phased.Collector('Sensor',hant,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'Wavefront','Plane','OperatingFrequency',4e9);

hrec = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2,...

 'ReferenceTemperature',290,'SampleRate',1e6,...

 'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

hspace = phased.FreeSpace(...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',4e9,'TwoWayPropagation',false,...

 'SampleRate',1e6);

% Time step between pulses

T = 1/hwav.PRF;

% Get antenna position

txpos = htxplat.InitialPosition;

% Allocate array for received echoes

rxsig = zeros(hwav.SampleRate*T,numpulses);

for n = 1:numpulses

 % Update the target position

 [tgtpos,tgtvel] = step(htgtplat,T);

 % Get the range and angle to the target

4 Waveforms, Transmitter, and Receiver

4-22

 [tgtrng,tgtang] = rangeangle(tgtpos,txpos);

 % Generate the pulse

 sig = step(hwav);

 % Transmit the pulse. Output transmitter status

 [sig,txstatus] = step(htx,sig);

 % Radiate the pulse toward the target

 sig = step(hrad,sig,tgtang);

 % Propagate the pulse to the target in free space

 sig = step(hspace,sig,txpos,tgtpos,[0;0;0],tgtvel);

 % Reflect the pulse off the target

 sig = step(htgt,sig);

 % Propagate the echo to the antenna in free space

 sig = step(hspace,sig,tgtpos,txpos,tgtvel,[0;0;0]);

 % Collect the echo from the incident angle at the antenna

 sig = step(hcol,sig,tgtang);

 % Receive the echo at the antenna when not transmitting

 rxsig(:,n) = step(hrec,sig,~txstatus);

end

rxsig = pulsint(rxsig,'noncoherent');

t = unigrid(0,1/hrec.SampleRate,T,'[)');

rangegates = (physconst('LightSpeed')*t)/2;

plot(rangegates,rxsig); hold on;

xlabel('Meters'); ylabel('Power');

ylim = get(gca,'YLim');

plot([tgtrng,tgtrng],[0 ylim(2)],'r');

 Waveforms with Staggered PRFs

4-23

Waveforms with Staggered PRFs

In this section...

“When to Use Staggered PRFs” on page 4-23
“Linear FM Waveform with Staggered PRF” on page 4-23

When to Use Staggered PRFs

Using a nonconstant PRF has important applications in radar. This approach is called
PRF staggering, or PRI staggering.

Uses of staggered PRFs include:

• The removal of Doppler ambiguities, or blind speeds, where Doppler frequencies that
are multiples of the PRF are aliased to zero

• Mitigation of the effects of jamming

To implement a staggered PRF, configure your waveform object with a vector instead of a
scalar as the PRF property value.

Linear FM Waveform with Staggered PRF

Model a linear FM pulse waveform with two PRFs, 1 and 2 kHz. Use a linear FM pulse
with a sweep bandwidth of 200 kHz and a duration of 100 μs. The sample rate is 1 MHz.
Output 5 pulses.

prfs = [1e3 2e3];

hfm = phased.LinearFMWaveform('PRF',prfs,...

 'SweepBandwidth',200e3,...

 'PulseWidth',100e-6,'NumPulses',5);

wf = step(hfm);

T = length(wf)*(1/hfm.SampleRate);

t = unigrid(0,1/hfm.SampleRate,T,'[)');

plot(t.*1000,real(wf))

set(gca,'xtick',[0 1 1.5 2.5 3]);

xlabel('milliseconds');

4 Waveforms, Transmitter, and Receiver

4-24

 Plot Spectrogram Using Radar Waveform Analyzer App

4-25

Plot Spectrogram Using Radar Waveform Analyzer App

The radarWaveformAnalyzer is a Matlab™ App that lets you explore important
properties of a signal such as its waveform, spectrum, and ambiguity function.

Open radarWaveformAnalyzer App

When you type radarWaveformAnalyzer from the command line or select the app
from the App Toolstrip, an interactive window opens. The default window shows
a rectangular waveform. You can then select various options to analyze different
waveforms.

radarWaveformAnalyzer

4 Waveforms, Transmitter, and Receiver

4-26

Show the spectrogram of baseband FMCW signal

As an example, use the app to show the spectrogram of a continuous FMCW waveform.

1 Set the Waveform to FMCW
2 Set the Sweep Interval to Symmetric
3 Set the Number of Sweeps to 4

 Plot Spectrogram Using Radar Waveform Analyzer App

4-27

4 Set the View to Spectrogram

Then, you will see a plot of the spectrogram of the signal similar to this.

filenm = fullfile(matlabroot,'examples','phased','radarWaveformAnalyzerAppExample_02.png');

im = imread(filenm);

figure('Position',[315 160 906 690])

image(im)

axis off

set(gca,'Position',[0.078 0.077 0.845 0.896])

4 Waveforms, Transmitter, and Receiver

4-28

Transmitter

In this section...

“Transmitter Object” on page 4-28
“Phase Noise” on page 4-30

Transmitter Object

The phased.Transmitter object enables you to model key components of the radar
equation including the peak transmit power, the transmit gain, and a system loss factor.
You can use phased.Transmitter together with radareqpow, radareqrng, and
radareqsnr, to relate the received echo power to your transmitter specifications.

While the preceding functionality is important in applications dependent on amplitude
such as signal detectability, Doppler processing depends on the phase of the complex
envelope. In order to accurately estimate the radial velocity of moving targets, it is
important that the radar operates in either a fully coherent or pseudo-coherent mode. In
the fully coherent, or coherent on transmit, mode, the phase of the transmitted pulses is
constant. Constant phase provides you with a reference to detect Doppler shifts.

A transmitter that applies a random phase to each pulse creates phase noise that can
obscure Doppler shifts. If the components of the radar do not enable you to maintain
constant phase, you can create a pseudo-coherent, or coherent on receive radar by keeping
a record of the random phase errors introduced by the transmitter. The receiver can
correct for these errors by modulation of the complex envelope. The phased.Transmitter
object enables you to model both coherent on transmit and coherent on receive behavior.

The transmitter object has the following modifiable properties:

• PeakPower — Peak transmit power in watts
• Gain — Transmit gain in decibels
• LossFactor — Loss factor in decibels
• InUseOutputPort — Track transmitter's status. Setting this property to true

outputs a vector of 1s and 0s indicating when transmitter is on and off. In a
monostatic radar, the transmitter and receiver cannot operate simultaneously.

• CoherentOnTransmit — Preserve coherence among transmitter pulses. Setting this
property to true (the default) models the operation of a fully coherent transmitter

 Transmitter

4-29

where the pulse-to-pulse phase is constant. Setting this property to false introduces
random phase noise from pulse to pulse and models the operation of a non-coherent
transmitter.

• PhaseNoiseOutputPort — Output the random pulse phases introduced by
non-coherent operation of the transmitter. This property only applies if the
CoherentOnTransmit property is false. By keeping a record of the random pulse
phases, you can create a pseudo-coherent, or coherent on receive radar.

Construct a transmitter with a peak transmit power of 1000 watts, a transmit gain of 20
decibels (dB), and a loss factor of 0 dB. Set the InUseOutPutPort property to true to
record the transmitter's status.

htx = phased.Transmitter('PeakPower',1e3,'Gain',20,...

 'LossFactor',0,'InUseOutputPort',true)

Construct a pulse waveform for transmission. In this example, use a 100-microsecond
linear FM pulse with a bandwidth of 200 kHz. Use the default sweep direction and
sample rate. Set the PRF to 2 kHz.

hpuls = phased.LinearFMWaveform('PulseWidth',100e-6,'PRF',2e3,...

 'SweepBandwidth',2e5,'OutputFormat','Pulses','NumPulses',1);

Obtain the pulse waveform using the step method of the waveform object. Transmit
the waveform using the step method of the transmitter object, hpuls. The output
is one pulse repetition interval because the NumPulses property of the waveform
object is equal to 1. The pulse waveform values are scaled based on the peak transmit
power and the ratio of the transmitter gain to loss factor. The scaling factor is
sqrt(htx.PeakPower*db2pow(htx.Gain-htx.LossFactor)).

wf = step(hpuls);

[txoutput,txstatus] = step(htx,wf);

t = unigrid(0,1/hpuls.SampleRate,1/hpuls.PRF,'[)');

subplot(211)

plot(t,real(txoutput));

axis tight; grid on; ylabel('Amplitude');

title('Transmitter Output (real part) - One PRI');

subplot(212)

plot(t,txstatus);

axis([0 t(end) 0 1.5]); xlabel('Seconds'); grid on;

ylabel('Off-On Status');

set(gca,'ytick',[0 1]);

title('Transmitter Status');

4 Waveforms, Transmitter, and Receiver

4-30

Phase Noise

To model a coherent on receive radar, you can set the CoherentOnTransmit property to
false and the PhaseNoiseOutputPort property to true. You can output the random
phase added to each sample with step.

To illustrate this process, the following example uses a rectangular pulse waveform
with five pulses. A random phase is added to each sample of the waveform. Compute the
phase of the output waveform and compare the phase to the phase noise returned by the
step method.

For convenience, set the gain of the transmitter to 0 dB, the peak power to 1 W, and seed
the random number generator to ensure reproducible results.

hrect = phased.RectangularWaveform('NumPulses',5);

htx = phased.Transmitter('CoherentOnTransmit',false,...

 'PhaseNoiseOutputPort',true,'Gain',0,'PeakPower',1,...

 'SeedSource','Property','Seed',1000);

wf = step(hrect);

[txtoutput,phnoise] = step(htx,wf);

phdeg = radtodeg(phnoise);

phdeg(phdeg>180)= phdeg(phdeg>180)-360;

plot(wf); title('Input Waveform');

axis([0 length(wf) 0 1.5]); ylabel('Amplitude');

grid on;

figure;

subplot(2,1,1)

plot(radtodeg(atan2(imag(txtoutput),real(txtoutput))))

 Transmitter

4-31

title('Phase of the Output'); ylabel('Degrees');

axis([0 length(wf) -180 180]); grid on;

subplot(2,1,2)

plot(phdeg); title('Phase Noise'); ylabel('Degrees');

axis([0 length(wf) -180 180]); grid on;

4 Waveforms, Transmitter, and Receiver

4-32

The first figure shows the waveform. The phase of each pulse at the input to the
transmitter is zero. In the second figure, the top plot shows the phase of the transmitter
output waveform. The bottom plot shows the phase added to each sample. Focus on the
first 100 samples. The pulse waveform is equal to 1 for samples 1–50 and 0 for samples
51–100. The added random phase is a constant –124.7 degrees for samples 1–100, but
this affects the output only when the pulse waveform is nonzero. In the output waveform,
you see that the output waveform has a phase of –124.7 degrees for samples 1–50 and

 Transmitter

4-33

0 for 51–100. Examining the transmitter output and phase noise for samples where the
input waveform is nonzero, you see that the phase output of step and the phase of the
transmitter output agree.

4 Waveforms, Transmitter, and Receiver

4-34

Receiver Preamp

In this section...

“Operation of Receiver Preamp” on page 4-34
“Configuring Receiver Preamp” on page 4-34
“Model Receiver Effects on Sinusoidal Input” on page 4-36
“Model Coherent on Receive Behavior” on page 4-38

Operation of Receiver Preamp

The phased.ReceiverPreamp object lets you model the effects of gain and
component-based noise on the signal-to-noise ratio (SNR) of received signals.
phased.ReceiverPreamp operates on baseband signals. The object is not intended to
model system effects at RF or intermediate frequency (IF) stages.

Configuring Receiver Preamp

The phased.ReceiverPreamp object has the following modifiable properties:

• EnableInputPort — A logical property that enables you to specify when the receiver
is on or off. Input the actual status of the receiver as a vector to step. This property
is useful when modeling a monostatic radar system. In a monostatic radar, it is
important to ensure the transmitter and receiver are not operating simultaneously.
See phased.Transmitter and “Transmitter” on page 4-28.

• Gain — Gain in dB (GdB)
• LossFactor — Loss factor in dB (LdB)
• NoiseMethod — Specify noise input as noise power or noise temperature
• NoiseFigure — Receiver noise figure in dB (FdB)
• ReferenceTemperature — Receiver reference temperature in kelvin (T)
• SampleRate — Sample rate (fs)
• NoisePower — Noise power specified in Watts (σ2)
• NoiseComplexity — Specify noise as real-valued or complex-valued
• EnableInputPort — Add input to specify when the receiver is active

 Receiver Preamp

4-35

• PhaseNoiseInputPort — Add input to specify phase noise for coherent on receive
receiver

• SeedSource — Lets you specify random number generator seed
• Seed — Random number generator seed

The output signal, y[n], of the phased.ReceiverPreamp System object equals the input
signal scaled by the ratio of receiver amplitude gain to amplitude loss plus additive noise

y n
G

L
x n w n[] [] []= +

s

2

where x[n] is the complex-valued input signal and w[n] is unit-variance noise complex-
valued noise.

When the input signal is real-valued, the output signal, y[n], equals the real-valued input
signal scaled by the ratio of receiver amplitude gain to amplitude loss plus real-valued
additive noise

y n
G

L
x n w n[] [] []= + s

.

The amplitude gain, G, and loss, L, can be express in terms of the input dB parameters
by

G

L

G

L

dB

dB

=

=

10

10

20

20

/

/

.

respectively.

The additive noise for the receiver is modeled as a zero-mean complex white Gaussian
noise vector with variance, σ2, equal to the noise power. The real and imaginary parts of
the noise vector each have variance equal to 1/2 the noise power.

4 Waveforms, Transmitter, and Receiver

4-36

You can set the noise power directly by choosing the NoiseMethod property to be
'Noise power' and then setting the NoisePower property to a real positive number.
Alternatively, you can set the noise power using the system temperature by choosing the
NoiseMethod property to be 'Noise temperature'. Then

s
2

= k BTFB

where kB is Boltzmann’s constant, B is the noise bandwidth which is equal to the sample
rate, fs, T is the system temperature, and F is the noise figure in power units.

The noise figure, F, is a dimensionless quantity that indicates how much a receiver
deviates from an ideal receiver in terms of internal noise. An ideal receiver produces
thermal noise power defined by noise bandwidth and temperature. In terms of power
units, the noise figure F = 10FdB/10. A noise figure of 0 dB indicates that the noise power of
a receiver equals the noise power of an ideal receiver. Because an actual receiver cannot
exhibit a noise power value less than an ideal receiver, the noise figure is always greater
than or equal to one. In decibels, the noise figure must be greater than or equal to zero.

To model the effect of the receiver preamp on the signal, phased.ReceiverPreamp
computes the effective system noise temperature by taking the product of the reference
temperature, T, and the noise figure F in power units. See systemp for details.

Model Receiver Effects on Sinusoidal Input

Specify a phased.ReceiverPreamp System object with a gain of 20 dB, a noise figure of
5 dB, and a reference temperature of 290 degrees kelvin.

hr = phased.ReceiverPreamp('Gain',20,...

 'NoiseFigure',5,'ReferenceTemperature',290,...

 'SampleRate',1e6,'SeedSource','Property','Seed',1e3);

Assume a 100-Hz sine wave input with an amplitude of 1 microvolt. Because the Phased
Array System Toolbox assumes that all modeling is done at baseband, use a complex
exponential as the input to the phased.ReceiverPreamp.step method.

t = unigrid(0,0.001,0.1,'[)');

x = 1e-6*exp(1j*2*pi*100*t).';

y = step(hr,x);

The output of the phased.ReceiverPreamp.step method is complex-valued as
expected.

 Receiver Preamp

4-37

Now show how the same output can be produced from the multiplicative amplitude gain
and additive noise. First assume that the noise bandwidth equals the sample rate of the
receiver preamp (1 MHz). Then, the noise power is equal to:

NoiseBandwidth = hr.SampleRate;

noisepow = physconst('Boltzmann')*...

 systemp(hr.NoiseFigure,hr.ReferenceTemperature)*NoiseBandwidth;

The noise power is the variance of the additive white noise. To determine the correct
amplitude scaling of the input signal, note that the gain is 20 dB. Because the loss
factor in this case is 0 dB, the scaling factor for the input signal is found by solving the
following equation for the multiplicative gain G from the gain in dB, :

G = 10^(hr.Gain/20)

G =

 10

The gain is 10. By scaling the input signal by a factor of ten and adding complex white
Gaussian noise with the appropriate variance, you produce an output equivalent to the
preceding call to phased.ReceiverPreamp.step (use the same seed for the random
number generation).

rng(1e3);

y1 = G*x + sqrt(noisepow/2)*(randn(size(x))+1j*randn(size(x)));

Compare a few values of y to y1.

disp(y1(1:10) - y(1:10))

 0

 0

 0

 0

 0

 0

 0

 0

 0

4 Waveforms, Transmitter, and Receiver

4-38

 0

Model Coherent on Receive Behavior

To model a coherent on receive monostatic radar use the EnableInputPort and
PhaseNoiseInputPort properties. In a monostatic radar, the transmitter and receiver
cannot operate simultaneously. Therefore, it is important to keep track of when the
transmitter is active so that you can disable the receiver at those times. You can input a
record of when the transmitter is active by setting the EnableInputPort to true and
providing this record to the step method.

In a coherent on receive radar, the receiver corrects for the phase noise introduced at
the transmitter by using the record of those phase errors. You can input a record of the
transmitter phase errors to step when you set the PhaseNoiseInputPort property to
true.

To illustrate this, construct a rectangular pulse waveform with five pulses. The PRF is
10 kHz and the pulse width is 50 μs. The PRI is exactly two times the pulse width so the
transmitter alternates between active and inactive time intervals of the same duration.
For convenience, set the gains on both the transmitter and receiver to 0 dB and the peak
power on the transmitter to 1 watt.

Use the PhaseNoiseOutputPort and InUseOutputPort properties on the transmitter
to record the phase noise and the status of the transmitter.

Enable the EnableInputPort and PhaseNoiseInputPort properties on the receiver
preamp to determine when the receiver is active and to correct for the phase noise
introduced at the transmitter.

Delay the output of the transmitter using delayseq to simulate the waveform arriving
at the receiver preamp when the transmitter is inactive and the receiver is active.

hrect = phased.RectangularWaveform('NumPulses',5);

htx = phased.Transmitter('CoherentOnTransmit',false,...

 'PhaseNoiseOutputPort',true,'Gain',0,'PeakPower',1,...

 'SeedSource','Property','Seed',1000,'InUseOutputPort',true);

wf = step(hrect);

[txtoutput,txstatus,phnoise] = step(htx,wf);

txtoutput = delayseq(txtoutput,hrect.PulseWidth,...

 hrect.SampleRate);

hrc = phased.ReceiverPreamp('Gain',0,...

 Receiver Preamp

4-39

 'PhaseNoiseInputPort',true,'EnableInputPort',true);

y = step(hrc,txtoutput,~txstatus,phnoise);

subplot(2,1,1)

plot(real(txtoutput));

title('Delayed Transmitter Output with Phase Noise');

ylabel('Amplitude');

subplot(2,1,2)

plot(real(y));

xlabel('Samples'); ylabel('Amplitude');

title('Received Signal with Phase Correction');

4 Waveforms, Transmitter, and Receiver

4-40

Radar Equation

In this section...

“Radar Equation Theory” on page 4-40
“Link Budget Calculation Using the Radar Equation” on page 4-41
“Maximum Detectable Range for a Monostatic Radar” on page 4-42
“Output SNR at the Receiver in a Bistatic Radar” on page 4-43

Radar Equation Theory

The point target radar range equation estimates the power at the input to the receiver
for a target of a given radar cross section at a specified range. In this equation, the signal
model is assumed to be deterministic. The equation for the power at the input to the
receiver is:

P
P G G

R R L
r

t t r

t r

=
l s

p

2

3 2 2
4()

where the terms in the equation are:

• Pr — Received power in watts.
• Pt — Peak transmit power in watts.
• Gt — Transmitter gain.
• Gr — Receiver gain.
• λ — Radar operating frequency wavelength in meters.
• σ — Target's nonfluctuating radar cross section in square meters.
• L — General loss factor to account for both system and propagation loss.
• Rt — Range from the transmitter to the target.
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter

and receiver ranges are identical.

The equation for the power at the input to the receiver represents the signal term in the
signal-to-noise (SNR) ratio. To model the noise term, assume the thermal noise in the
receiver has a white noise power spectral density (PSD) given by:

 Radar Equation

4-41

P f kT() =

where k is the Boltzmann constant and T is the effective noise temperature. The receiver
acts as a filter to shape the white noise PSD. Assume that the magnitude squared
receiver frequency response approximates a rectangular filter with bandwidth equal
to the reciprocal of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn

=

t

where Fn is the receiver noise figure.

The product of the effective noise temperature and the receiver noise factor is referred to
as the system temperature and is denoted by Ts, so that Ts = TFn .

Using the equation for the received signal power and the output noise power, the receiver
output SNR is:

P

N

P G G

kT R R L

r t t r

s t r

=
t l s

p

2

3 2 2
4()

Solving for the required peak transmit power:

P
P kT R R L

N G G
t

r s t r

t r

=
()4

3 2 2

2

p

t l s

The preceding equations are implemented in the Phased Array System Toolbox by
the functions: radareqpow, radareqrng, and radareqsnr. These functions and
the equations on which they are based are valuable tools in radar system design and
analysis.

Link Budget Calculation Using the Radar Equation

This example shows how to compute the required peak transmit power using the radar
equation. You implement a noncoherent detector with a monostatic radar operating at
5 GHz. Based on the noncoherent integration of ten one-microsecond pulses, you want

4 Waveforms, Transmitter, and Receiver

4-42

to achieve a detection probability of 0.9 with a maximum false-alarm probability of 10–

6 for a target with a nonfluctuating radar cross section (RCS) of 1 m2 at 30 km. The
transmitter gain is 30 dB. Determine the required SNR at the receiver and use the radar
equation to calculate the required peak transmit power.

Use Albersheim's equation to determine the required SNR for the specified detection and
false-alarm probabilities.

Pd = 0.9;

Pfa = 1e-6;

NumPulses = 10;

SNR = albersheim(Pd,Pfa,10)

The required SNR is approximately 5 dB. Use the function radareqpow to determine the
required peak transmit power in watts.

tgtrng = 30e3; % target range in meters

lambda = 3e8/5e9; % wavelength of the operating frequency

RCS = 1; % target RCS

pulsedur = 1e-6; %pulse duration

G = 30; % transmitter and receiver gain (monostatic radar)

Pt = radareqpow(lambda,tgtrng,SNR,pulsedur,'rcs',RCS,'gain',G)

The required peak power is approximately 5.6 kW.

Maximum Detectable Range for a Monostatic Radar

Assume that the minimum detectable SNR at the receiver of a monostatic radar
operating at 1 GHz is 13 dB. Use the radar equation to determine the maximum
detectable range for a target with a nonfluctuating RCS of 0.5 m2 if the radar has a peak
transmit power of 1 MW. Assume the transmitter gain is 40 dB and the radar transmits
a pulse that is 0.5 μs in duration.

tau = 0.5e-6; % pulse duration

G = 40; % transmitter and receiver gain (monostatic radar)

RCS = 0.5; % target RCS

Pt = 1e6; %peak transmit power in watts

lambda = 3e8/1e9;

SNR = 13; % required SNR in dB

maxrng = radareqrng(lambda,SNR,Pt,tau,'rcs',RCS,'gain',G)

The maximum detectable range is approximately 345 km.

 Radar Equation

4-43

Output SNR at the Receiver in a Bistatic Radar

Estimate the output SNR for a target with an RCS of 1 m2. The radar is bistatic. The
target is located 50 km from the transmitter and 75 km from the receiver. The radar
operating frequency is 10 GHz. The transmitter has a peak transmit power of 1 MW with
a gain of 40 dB. The pulse width is 1 μs. The receiver gain is 20 dB.

lambda = physconst('LightSpeed')/10e9;

tau = 1e-6;

Pt = 1e6;

TxRvRng =[50e3 75e3];

Gain = [40 20];

snr = radareqsnr(lambda,TxRvRng,Pt,tau,'Gain',Gain);

The estimated SNR is approximately 9 dB.

4 Waveforms, Transmitter, and Receiver

4-44

Display Vertical Coverage Diagram

Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed
20 meters above the ground. Set the free-space range to 100 km. Use default plotting
parameters.

freq = 100e6;

ant_height = 20;

rng_fs = 100;

[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);

blakechart(vcp, vcpangles);

 Compute Peak Power Using Radar Equation Calculator App

4-45

Compute Peak Power Using Radar Equation Calculator App

The radarEquationCalculator is a Matlab™ App that lets you determine key radar
characteristics such as detection range, required peak transmit power, and SNR. The
App works for monostatic and bistatic radars.

Open radarEquationCalculator App

When you type radarEquationCalculator from the command line or select the app
from the App Toolstrip, an interactive window opens. The default window shows a
calculation of target range from SNR, power, and other parameters. You can then select
various options to compute different radar parameters.

radarEquationCalculator

4 Waveforms, Transmitter, and Receiver

4-46

Compute Required Peak Transmit Power of Monostatic Radar

As an example, use the app to compute the required peak transmit power for a
monostatic radar to detect a large target at 100 km. The radar operates at 10 GHz with

 Compute Peak Power Using Radar Equation Calculator App

4-47

a 40 dB antenna gain. Set the probability of detection to 0.9 and the probability of false
alarm to 0.0001.

1 From the Calculation Type drop-down list, choose Peak Transmit Power
2 Set the Wavelength to 3 cm
3 Specify the Pulse Width as 2 microseconds
4 Assume total System Losses of 5 dB
5 Assuming the target is a large airplane, set Target Radar Cross Section value to

100 m2
6 Choose Configuration as Monostatic
7 Set the Gain to be 40 dB
8 Open the SNR box
9 Specify the Probability of Detections as 0.9
10 Specify the Probability of False Alarm as 0.0001

Close the App window. Normally, you close the App using the close button.

hg = findall(0,'Name','Radar Equation Calculator');

close(hg)

You can see from this previously prepared screen shot that the required peak transmit
power is .2095 W.

filenm = fullfile(matlabroot,'examples','phased','radarEquationExample_03.png');

im = imread(filenm);

figure('Position',[344 206 849 644])

image(im)

axis off

set(gca,'Position',[0.083 0.083 0.834 0.888])

4 Waveforms, Transmitter, and Receiver

4-48

5

Beamforming

• “Conventional Beamforming” on page 5-2
• “Adaptive Beamforming” on page 5-7
• “Wideband Beamforming” on page 5-11
• “Time-Delay Beamforming of Microphone ULA Array” on page 5-18
• “Visualization of Wideband Beamformer Performance” on page 5-20

5 Beamforming

5-2

Conventional Beamforming

In this section...

“Uses for Beamformers” on page 5-2
“Support for Conventional Beamforming” on page 5-2
“Narrowband Phase Shift Beamformer with a ULA” on page 5-2

Uses for Beamformers

You can use a beamformer to spatially filter the arriving signals. Accentuating or
attenuating signals that arrive from specific directions helps you distinguish between
signals of interest and interfering signals from other directions.

Support for Conventional Beamforming

You can implement a narrowband phase shift beamformer using
phased.PhaseShiftBeamformer. When you use this object, you must specify these aspects
of the situation you are simulating:

• Sensor array
• Signal propagation speed
• System operating frequency
• Beamforming direction

For wideband beamformers, see “Wideband Beamforming” on page 5-11.

Narrowband Phase Shift Beamformer with a ULA

Construct a ULA with 10 elements. Assume the carrier frequency is 1 GHz and set the
array element spacing to be one-half the carrier frequency wavelength.

fc = 1e9;

lambda = physconst('LightSpeed')/fc;

hula = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);

The ULA sensors are isotropic antenna elements (see phased.IsotropicAntennaElement).
Set the frequency range of the antenna elements to position the carrier frequency in the
middle of the operating range.

 Conventional Beamforming

5-3

hula.Element.FrequencyRange = [8e8 1.2e9];

Simulate a test signal. For this example, use a simple rectangular pulse.

t = linspace(0,0.3,300)';

testsig = zeros(size(t));

testsig(201:205)= 1;

Assume the rectangular pulse is incident on the ULA from an angle of 30 degrees
azimuth and 0 degrees elevation. Use the collectPlaneWave method of the ULA object to
simulate reception of the pulse waveform from the specified angle.

angle_of_arrival = [30;0];

x = collectPlaneWave(hula,testsig,angle_of_arrival,fc);

x is a matrix with ten columns. Each column represents the received signal at one of the
array elements.

Corrupt the columns of x with complex-valued Gaussian noise. Reset the default random
number stream for reproducible results. Plot the magnitudes of the received pulses at the
first four elements of the ULA.

rng default

npower = 0.5;

x = x + sqrt(npower/2)*(randn(size(x))+1i*randn(size(x)));

subplot(221)

plot(t,abs(x(:,1))); title('Element 1 (magnitude)');

axis tight; ylabel('Magnitude');

subplot(222)

plot(t,abs(x(:,2))); title('Element 2 (magnitude)');

axis tight; ylabel('Magnitude');

subplot(223)

plot(t,abs(x(:,3))); title('Element 3 (magnitude)');

axis tight; xlabel('Seconds'); ylabel('Magnitude');

subplot(224)

plot(t,abs(x(:,4))); title('Element 4 (magnitude)');

axis tight; xlabel('Seconds'); ylabel('Magnitude');

5 Beamforming

5-4

Construct your phase-shift beamformer. Set the WeightsOutputPort property to true
to output the spatial filter weights.

hbf = phased.PhaseShiftBeamformer('SensorArray',hula,...

 'OperatingFrequency',1e9,'Direction',angle_of_arrival,...

 'WeightsOutputPort',true);

Apply the step method for the phase shift beamformer. The step method computes and
applies the correct weights for the specified angle. The phase-shifted outputs from the
ten array elements are then summed.

[y,w] = step(hbf,x);

Plot the magnitude of the output waveform along with the original waveform for
comparison.

figure;

subplot(211)

plot(t,abs(testsig)); axis tight;

title('Original Signal'); ylabel('Magnitude');

subplot(212)

plot(t,abs(y)); axis tight;

title('Received Signal with Beamforming');

ylabel('Magnitude'); xlabel('Seconds');

 Conventional Beamforming

5-5

To examine the effect of the beamforming weights on the array response, plot the array
normalized power response both with—and without—the beamforming weights.

azang = -180:30:180;

figure;

subplot(211)

plotResponse(hula,fc,physconst('LightSpeed'));

set(gca,'xtick',azang);

title('Array Response without Beamforming Weights');

subplot(212)

plotResponse(hula,fc,physconst('LightSpeed'),'weights',w);

set(gca,'xtick',azang);

title('Array Response with Beamforming Weights');

5 Beamforming

5-6

Related Examples
• “Conventional and Adaptive Beamformers”

 Adaptive Beamforming

5-7

Adaptive Beamforming

In this section...

“Benefits of Adaptive Beamforming” on page 5-7
“Support for Adaptive Beamforming” on page 5-7
“LCMV Beamformer” on page 5-7

Benefits of Adaptive Beamforming

“Narrowband Phase Shift Beamformer with a ULA” on page 5-2 uses weights chosen
independent of any data received by the array. The weights in the narrowband phase
shift beamformer steer the array response in a specified direction. However, they do not
account for any interference scenarios. As a result, these conventional beamformers are
susceptible to interference signals. Such interference signals can be a particular problem
if they occur at sidelobes of the array response.

By contrast, adaptive, or statistically optimum, beamformers can account for interference
signals. An adaptive beamformer algorithm chooses the weights based on the statistics of
the received data. For example, an adaptive beamformer can improve the SNR by using
the received data to place nulls in the array response. These nulls are placed at angles
corresponding to the interference signals.

Support for Adaptive Beamforming

Phased Array System Toolbox software provides these adaptive beamformers:

• Linearly constrained minimum variance (LCMV) beamformers
• Minimum variance distortionless response (MVDR) beamformers
• Frost beamformers

LCMV Beamformer

This example uses code from the “Narrowband Phase Shift Beamformer with a ULA” on
page 5-2 example. Execute the code from that example before you run this example.

Use phased.BarrageJammer as the interference source. Specify the barrage jammer
to have an effective radiated power of 10 W. The interference signal from the barrage

5 Beamforming

5-8

jammer is incident on the ULA at an angle of 120 degrees azimuth and 0 degrees
elevation.

hjammer = phased.BarrageJammer('ERP',10,'SamplesPerFrame',300);

jamsig = step(hjammer);

jammer_angle = [120;0];

jamsig = collectPlaneWave(hula,jamsig,jammer_angle,fc);

Add some low-level complex white Gaussian noise to simulate noise contributions not
directly associated with the jamming signal. Seed the random number generator for
reproducible results.

noisePwr = 0.00001; % noise power, 50dB SNR

rng(2008);

noise = sqrt(noisePwr/2)*...

 (randn(size(jamsig))+1j*randn(size(jamsig)));

jamsig = jamsig+noise;

rxsig = x+jamsig;

[yout,w] = step(hbf,rxsig);

Implement the LCMV beamformer. Use the target-free data,jamsig, as training data.
Output the beamformer weights.

hstv = phased.SteeringVector('SensorArray',hula,...

 'PropagationSpeed',physconst('LightSpeed'));

hLCMV = phased.LCMVBeamformer('DesiredResponse',1,...

 'TrainingInputPort',true,'WeightsOutputPort',true);

hLCMV.Constraint = step(hstv,fc,angle_of_arrival);

hLCMV.DesiredResponse = 1;

[yLCMV,wLCMV] = step(hLCMV,rxsig,jamsig);

subplot(211)

plot(t,abs(yout)); axis tight;

title('Conventional Beamformer');

ylabel('Magnitude');

subplot(212);

plot(t,abs(yLCMV)); axis tight;

title('LCMV (Adaptive) Beamformer');

xlabel('Seconds'); ylabel('Magnitude');

 Adaptive Beamforming

5-9

The adaptive beamformer significantly improves the SNR of the rectangular pulse at 0.2
s.

Plot the array normalized power response for the conventional and LCMV beamformers.

figure;

subplot(211)

plotResponse(hula,fc,physconst('LightSpeed'),'weights',w);

title('Array Response with Conventional Beamforming Weights');

subplot(212)

plotResponse(hula,fc,physconst('LightSpeed'),'weights',wLCMV);

title('Array Response with LCMV Beamforming Weights');

5 Beamforming

5-10

The LCMV beamforming weights place a null in the array response at the arrival angle
of the interference signal.

See Also
phased.FrostBeamformer | phased.LCMVBeamformer | phased.MVDRBeamformer

Related Examples
• “Conventional and Adaptive Beamformers”

 Wideband Beamforming

5-11

Wideband Beamforming

In this section...

“Support for Wideband Beamforming” on page 5-11
“Time-Delay Beamforming of Microphone ULA Array” on page 5-11
“Visualization of Wideband Beamformer Performance” on page 5-13

Support for Wideband Beamforming

Beamforming achieved by multiplying the sensor input by a complex exponential with
the appropriate phase shift only applies for narrowband signals. In the case of wideband,
or broadband, signals, the steering vector is not a function of a single frequency.
Wideband processing is commonly used in microphone and acoustic applications.

Phased Array System Toolbox software provides conventional and adaptive wideband
beamformers. They include:

• phased.FrostBeamformer
• phased.SubbandPhaseShiftBeamformer
• phased.TimeDelayBeamformer
• phased.TimeDelayLCMVBeamformer

See “Acoustic Beamforming Using a Microphone Array” for an example of using
wideband beamforming to extract speech signals in noise.

Time-Delay Beamforming of Microphone ULA Array

This example shows how to perform wideband conventional time-delay beamforming
with a microphone array of omnidirectional elements. Create an acoustic (pressure wave)
chirp signal. The chirp signal has a bandwidth of 1 kHz and propagates at a speed of 340
m/s at ground level.

c = 340;

t = linspace(0,1,5e4)';

sig = chirp(t,0,1,1000);

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone
elements spaced less than one-half the wavelength at the 50 kHz sampling frequency.

5 Beamforming

5-12

The chirp is incident on the ULA with an angle of 45 degrees azimuth and 0 degrees
elevation. Add random noise to the signal.

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20e3]);

sULA = phased.ULA('Element',sMic,'NumElements',10,...

 'ElementSpacing',0.01);

sColl = phased.WidebandCollector('Sensor',sULA,'SampleRate',5e4,...

 'PropagationSpeed',c,'ModulatedInput',false);

sigang = [60;0];

rsig = step(sColl,sig,sigang);

rsig = rsig + 0.1*randn(size(rsig));

Apply a wideband conventional time-delay beamformer to improve the SNR of the
received signal.

sTDF = phased.TimeDelayBeamformer('SensorArray',sULA,...

 'SampleRate',5e4,'PropagationSpeed',c,'Direction',sigang);

y = step(sTDF,rsig);

subplot(2,1,1)

plot(t(1:5e3),real(rsig(1:5e3,5)))

title('Signal (real part) at the 5th element of the ULA')

subplot(2,1,2)

plot(t(1:5e3),real(y(1:5e3)))

title('Signal (real part) with time-delay beamforming')

xlabel('Seconds')

 Wideband Beamforming

5-13

Visualization of Wideband Beamformer Performance

This example shows how to plot the response of an acoustic microphone element and an
array of these elements to validate the performance of a beamformer. The array must
maintain an acceptable array pattern throughout the bandwidth.

Create a uniform linear array (ULA) of cosine antenna elements. The
phased.CosineAntennaElement System object™ is general enough to be used as
a microphone element as well because it creates or receives a scalar field. You need
to change the response frequencies to the audible range. In addition make sure the
PropagationSpeed parameter in the array pattern methods are set to the speed of
sound.

5 Beamforming

5-14

c = 340;

freq = [1000 2750];

fc = 2000;

numels = 11;

sCosMic = phased.CosineAntennaElement('FrequencyRange',freq);

sULA = phased.ULA('NumElements',numels,...

 'ElementSpacing',0.5*c/fc,'Element',sCosMic);

Plot the response pattern of the microphone element over a set of frequencies.

plotFreq = linspace(min(freq),max(freq),15);

pattern(sCosMic,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...

 'PlotStyle','waterfall','Type','powerdb')

This plot shows that the element pattern is constant over the entire bandwidth.

 Wideband Beamforming

5-15

Plot the response pattern of an 11-element array over the same set of frequencies.

pattern(sULA,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...

 'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

This plot shows that the element pattern mainlobe decreases with frequency.

Apply a subband phase shift beamformer to the array. The direction of interest is 30°
azimuth and 0° elevation. There are 8 subbands.

direction = [30;0];

numbands = 8;

sPSB = phased.SubbandPhaseShiftBeamformer('SensorArray',sULA,...

 'Direction',direction,...

5 Beamforming

5-16

 'OperatingFrequency',fc,'PropagationSpeed',c,...

 'SampleRate',1e3,...

 'WeightsOutputPort',true,'SubbandsOutputPort',true,...

 'NumSubbands',numbands);

rx = ones(numbands,numels);

[y,w,centerfreqs] = step(sPSB,rx);

Plot the response pattern of the array using the weights and center frequencies from the
beamformer.

pattern(sULA,centerfreqs.',[-180:180],0,'Weights',w,'CoordinateSystem','rectangular',...

 'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

The above plot shows the beamformed pattern at the center frequency of each subband.

 Wideband Beamforming

5-17

Plot the response pattern at three frequencies in two-dimensions.

centerfreqs = fftshift(centerfreqs);

w = fftshift(w,2);

idx = [1,5,8];

pattern(sULA,centerfreqs(idx).',[-180:180],0,'Weights',w(:,idx),'CoordinateSystem','rectangular',...

 'PlotStyle','overlay','Type','powerdb','PropagationSpeed',c)

legend('Location','South')

This plot shows that the main beam direction remains constant while the beamwidth
decreases with frequency.

5 Beamforming

5-18

Time-Delay Beamforming of Microphone ULA Array

This example shows how to perform wideband conventional time-delay beamforming
with a microphone array of omnidirectional elements. Create an acoustic (pressure wave)
chirp signal. The chirp signal has a bandwidth of 1 kHz and propagates at a speed of 340
m/s at ground level.

c = 340;

t = linspace(0,1,5e4)';

sig = chirp(t,0,1,1000);

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone
elements spaced less than one-half the wavelength at the 50 kHz sampling frequency.
The chirp is incident on the ULA with an angle of 45 degrees azimuth and 0 degrees
elevation. Add random noise to the signal.

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20e3]);

sULA = phased.ULA('Element',sMic,'NumElements',10,...

 'ElementSpacing',0.01);

sColl = phased.WidebandCollector('Sensor',sULA,'SampleRate',5e4,...

 'PropagationSpeed',c,'ModulatedInput',false);

sigang = [60;0];

rsig = step(sColl,sig,sigang);

rsig = rsig + 0.1*randn(size(rsig));

Apply a wideband conventional time-delay beamformer to improve the SNR of the
received signal.

sTDF = phased.TimeDelayBeamformer('SensorArray',sULA,...

 'SampleRate',5e4,'PropagationSpeed',c,'Direction',sigang);

y = step(sTDF,rsig);

subplot(2,1,1)

plot(t(1:5e3),real(rsig(1:5e3,5)))

title('Signal (real part) at the 5th element of the ULA')

subplot(2,1,2)

plot(t(1:5e3),real(y(1:5e3)))

title('Signal (real part) with time-delay beamforming')

xlabel('Seconds')

 Time-Delay Beamforming of Microphone ULA Array

5-19

5 Beamforming

5-20

Visualization of Wideband Beamformer Performance

This example shows how to plot the response of an acoustic microphone element and an
array of these elements to validate the performance of a beamformer. The array must
maintain an acceptable array pattern throughout the bandwidth.

Create a uniform linear array (ULA) of cosine antenna elements. The
phased.CosineAntennaElement System object™ is general enough to be used as
a microphone element as well because it creates or receives a scalar field. You need
to change the response frequencies to the audible range. In addition make sure the
PropagationSpeed parameter in the array pattern methods are set to the speed of
sound.

c = 340;

freq = [1000 2750];

fc = 2000;

numels = 11;

sCosMic = phased.CosineAntennaElement('FrequencyRange',freq);

sULA = phased.ULA('NumElements',numels,...

 'ElementSpacing',0.5*c/fc,'Element',sCosMic);

Plot the response pattern of the microphone element over a set of frequencies.

plotFreq = linspace(min(freq),max(freq),15);

pattern(sCosMic,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...

 'PlotStyle','waterfall','Type','powerdb')

 Visualization of Wideband Beamformer Performance

5-21

This plot shows that the element pattern is constant over the entire bandwidth.

Plot the response pattern of an 11-element array over the same set of frequencies.

pattern(sULA,plotFreq,[-180:180],0,'CoordinateSystem','rectangular',...

 'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

5 Beamforming

5-22

This plot shows that the element pattern mainlobe decreases with frequency.

Apply a subband phase shift beamformer to the array. The direction of interest is 30°
azimuth and 0° elevation. There are 8 subbands.

direction = [30;0];

numbands = 8;

sPSB = phased.SubbandPhaseShiftBeamformer('SensorArray',sULA,...

 'Direction',direction,...

 'OperatingFrequency',fc,'PropagationSpeed',c,...

 'SampleRate',1e3,...

 'WeightsOutputPort',true,'SubbandsOutputPort',true,...

 'NumSubbands',numbands);

rx = ones(numbands,numels);

 Visualization of Wideband Beamformer Performance

5-23

[y,w,centerfreqs] = step(sPSB,rx);

Plot the response pattern of the array using the weights and center frequencies from the
beamformer.

pattern(sULA,centerfreqs.',[-180:180],0,'Weights',w,'CoordinateSystem','rectangular',...

 'PlotStyle','waterfall','Type','powerdb','PropagationSpeed',c)

The above plot shows the beamformed pattern at the center frequency of each subband.

Plot the response pattern at three frequencies in two-dimensions.

centerfreqs = fftshift(centerfreqs);

w = fftshift(w,2);

5 Beamforming

5-24

idx = [1,5,8];

pattern(sULA,centerfreqs(idx).',[-180:180],0,'Weights',w(:,idx),'CoordinateSystem','rectangular',...

 'PlotStyle','overlay','Type','powerdb','PropagationSpeed',c)

legend('Location','South')

This plot shows that the main beam direction remains constant while the beamwidth
decreases with frequency.

6

Direction-of-Arrival (DOA) Estimation

• “Beamscan Direction-of-Arrival Estimation” on page 6-2
• “Super-Resolution DOA Estimation” on page 6-4
• “Target Tracking Using Sum-Difference Monopulse Radar” on page 6-8

6 Direction-of-Arrival (DOA) Estimation

6-2

Beamscan Direction-of-Arrival Estimation

This example shows how to use the nonparametric beamscan technique to estimate the
direction of arrival (DOA) of signals. The beamscan algorithm estimates the DOAs by
scanning the array beam over a region of interest. The algorithm computes the output
power for each beamscan angle and identifies the maxima as the DOA estimates.

Construct a ULA consisting of ten elements. Assume the carrier frequency of the
incoming narrowband sources is 1 GHz.

fc = 1e9;

lambda = physconst('LightSpeed')/fc;

sULA = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);

sULA.Element.FrequencyRange = [8e8 1.2e9];

Assume that there is a wavefield incident on the ULA consisting of two linear FM pulses.
The DOAs of the two sources are 30° azimuth and 60° azimuth. Both sources have
elevation angles of 0°.

sLFM = phased.LinearFMWaveform('SweepBandwidth',1e5,...

 'PulseWidth',5e-6,'OutputFormat','Pulses','NumPulses',1);

sig1 = step(sLFM);

sig2 = sig1;

ang1 = [30; 0];

ang2 = [60;0];

arraysig = collectPlaneWave(sULA,[sig1 sig2],[ang1 ang2],fc);

rng default

npower = 0.01;

noise = sqrt(npower/2)*...

 (randn(size(arraysig)) + 1i*randn(size(arraysig)));

rxsig = arraysig + noise;

Implement a beamscan DOA estimator. Output the DOA estimates, and plot the spatial
spectrum.

sBcan = phased.BeamscanEstimator('SensorArray',sULA,...

 'OperatingFrequency',fc,'ScanAngles',-90:90,...

 'DOAOutputPort',true,'NumSignals',2);

[y,sigang] = step(sBcan,rxsig);

plotSpectrum(sBcan)

 Beamscan Direction-of-Arrival Estimation

6-3

Related Examples
• “Super-Resolution DOA Estimation” on page 6-4
• Direction of Arrival Estimation with Beamscan and MVDR

../examples/direction-of-arrival-estimation-with-beamscan-and-mvdr.html

6 Direction-of-Arrival (DOA) Estimation

6-4

Super-Resolution DOA Estimation

This example shows how to estimate angles of arrival from two separate signal sources
when both angles fall within the main lobe of the array response a uniform linear array
(ULA). In this case, a beamscan DOA estimator cannot resolve the two sources. However,
a super-resolution DOA estimator using the root MUSIC algorithm is able to do so.

Plot the array response of the ULA. Zoom in on the main lobe.

fc = 1e9;

lambda = physconst('LightSpeed')/fc;

sULA = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);

sULA.Element.FrequencyRange = [8e8 1.2e9];

plotResponse(sULA,fc,physconst('LightSpeed'))

axis([-25 25 -30 0]);

 Super-Resolution DOA Estimation

6-5

Receive two signal sources with DOAs separated by ten degrees.

ang1 = [30; 0];

ang2 = [40; 0];

Nsnapshots = 1000;

rng default

npower = 0.01;

rxsig = sensorsig(getElementPosition(sULA)/lambda,...

 Nsnapshots,[ang1 ang2],npower);

Estimate the directions of arrival using the beamscan estimator. Because both DOAs fall
inside the main lobe of the array response, the beamscan DOA estimator cannot resolve
them as separate sources.

6 Direction-of-Arrival (DOA) Estimation

6-6

sBscan = phased.BeamscanEstimator('SensorArray',sULA,...

 'OperatingFrequency',fc,'ScanAngles',-90:90,...

 'DOAOutputPort',true,'NumSignals',2);

[~,sigang] = step(sBscan,rxsig);

plotSpectrum(sBscan)

Use the super-resolution DOA estimator to estimate the two directions. This estimator
offers better resolution than the nonparametric beamscan estimator.

sRootMus = phased.RootMUSICEstimator('SensorArray',sULA,...

 'OperatingFrequency',fc,'NumSignalsSource','Property',...

 'NumSignals',2,'ForwardBackwardAveraging',true);

doa_est = step(sRootMus,rxsig)

 Super-Resolution DOA Estimation

6-7

doa_est =

 40.0091 30.0048

This estimator correctly identifies the two distinct directions of arrival.

See Also
phased.RootMUSICEstimator

Related Examples
• “Beamscan Direction-of-Arrival Estimation” on page 6-2
• High Resolution Direction of Arrival Estimation

../examples/high-resolution-direction-of-arrival-estimation.html

6 Direction-of-Arrival (DOA) Estimation

6-8

Target Tracking Using Sum-Difference Monopulse Radar

This example shows how to use the phased.SumDifferenceMonopulseTracker
System object™ to track a moving target. The
phased.SumDifferenceMonopulseTracker tracker solves for the direction of a
target from signals arriving on a uniform linear array (ULA). The sum-difference
monopulse algorithm requires a prior estimate of the target direction which is assumed
to be close to the actual direction. In a tracker, the current estimate serves as the prior
information for the next estimate. The target is a narrowband 500 MHz emitter moving
at a constant velocity of 800 kph. For a ULA array, the steering vector depends only upon
the broadside angle. The broadside angle is the angle between the source direction and a
plane normal to the linear array. Any arriving signal is specified by its broadside angle.

Create the target platform and define its motion

Assume the target is located at [0,10000,20000] with respect to the radar in the
radar's local coordinate system. Assume that the target is moving along the y-axis toward
the radar at 800 kph.

x0 = [0,10000,20000].';

v0 = 800;

v0 = v0*1000/3600;

sTgt = phased.Platform(x0,[0,-v0,0].');

Set up the ULA array

The monopulse tracker uses a ULA array which consists of 8 isotropic antenna elements.
The element spacing is set to one-half the signal wavelength.

fc = 500e6;

c = physconst('LightSpeed');

lam = c/fc;

sIso = phased.IsotropicAntennaElement('FrequencyRange',[100e6,800e6],...

 'BackBaffled',true);

sULA = phased.ULA('Element',sIso,'NumElements',8,...

 'ElementSpacing',lam/2);

Assume a narrowband signal. This kind of signal can be simulated using the
phased.SteeringVector System object.

sSV = phased.SteeringVector('SensorArray',sULA);

 Target Tracking Using Sum-Difference Monopulse Radar

6-9

Tracking Loop

Initialize the tracking loop. Create the phased.SumDifferenceMonopulseTracker
System object.

sMP = phased.SumDifferenceMonopulseTracker('SensorArray',sULA,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc);

At each time step, compute the broadside angle of the target with respect to the array.
Set the step time to 0.5 seconds.

T = 0.5;

Nsteps = 40;

t = [1:Nsteps]*T;

Setup data vectors for storing and displaying results

rng = zeros(1,Nsteps);

broadang_actual = zeros(1,Nsteps);

broadang_est = zeros(1,Nsteps);

angerr = zeros(1,Nsteps);

Step through the tracking loop. First provide an estimate of the initial broadside angle.
In this simulation, the actual broadside angle is known but add an error of five degrees.

[tgtrng,tgtang_actual] = rangeangle(x0,[0,0,0].');

broadang0 = az2broadside(tgtang_actual(1),tgtang_actual(2));

broadang_prev = broadang0 + 5.0; % add some sort of error

1 compute the actual broadside angle, broadang_actual.
2 compute the signal, signl, from the actual broadside angle, using the

phased.SteeringVector System object.
3 using the phased.SumDifferenceMonopulseTracker tracker, estimate the

broadside angle, broadang_est, from the signal. The broadside angle derived from
a previous step serves as an initial estimate for the current step.

4 compute the difference between the estimated broadside angle, broadang_est,
and actual broadside angle, broadang_actual. This is a measure of how good the
solution is.

for n = 1:Nsteps

 x = step(sTgt,t(n));

 [rng(n),tgtang_actual] = rangeangle(x,[0,0,0].');

6 Direction-of-Arrival (DOA) Estimation

6-10

 broadang_actual(n) = az2broadside(tgtang_actual(1),tgtang_actual(2));

 signl = step(sSV,fc,broadang_actual(n)).';

 broadang_est(n) = step(sMP,signl,broadang_prev);

 broadang_prev = broadang_est(n);

 angerr(n) = broadang_est(n) - broadang_actual(n);

end

Results

Plot the range as a function of time showing the point of closest approach.

plot(t,rng/1000,'-o')

xlabel('time (sec)')

ylabel('Range (km)')

 Target Tracking Using Sum-Difference Monopulse Radar

6-11

Plot the estimated broadside angle as a function of time.

plot(t,broadang_actual,'-o')

xlabel('time (sec)')

ylabel('Broadside angle (deg)')

A monopulse tracker cannot solve for the direction angle if the angular separation
between samples is too large. The maximum allowable angular separation is
approximately one-half the null-to-null beamwidth of the array. For an 8-element, half-
wavelength-spaced ULA, the half-beamwidth is approximately 14.3 degrees at broadside.
In this simulation, the largest angular difference between samples is

maxangdiff = max(abs(diff(broadang_est)));

disp(maxangdiff)

6 Direction-of-Arrival (DOA) Estimation

6-12

 4.9546

Therefore, the angular separation between samples is less than the half-beamwidth.

Plot the angle error. This is the difference between the estimated angle and the actual
angle. The plot shows a very small error, on the order of microdegrees.

plot(t,angerr,'-o')

xlabel('time (sec)')

ylabel('Angle error (deg)')

7

Space-Time Adaptive Processing
(STAP)

• “Angle-Doppler Response” on page 7-2
• “Displaced Phase Center Antenna (DPCA) Pulse Canceller” on page 7-8
• “Adaptive Displaced Phase Center Antenna Pulse Canceller” on page 7-13
• “Sample Matrix Inversion (SMI) Beamformer” on page 7-18

7 Space-Time Adaptive Processing (STAP)

7-2

Angle-Doppler Response

In this section...

“Benefits of Visualizing Angle-Doppler Response” on page 7-2
“Angle-Doppler Response of a Stationary Target at a Stationary Array” on page 7-2
“Angle-Doppler Response of a Stationary Target Return at a Moving Array” on page
7-4

Benefits of Visualizing Angle-Doppler Response

Visualizing a signal in the angle-Doppler domain can help you identify characteristics
of the signal in direction and speed. You can distinguish among targets moving at
various speeds in various directions. If a transmitter platform is stationary, returns from
stationary targets map to zero in the Doppler domain while returns from moving targets
exhibit a nonzero Doppler shift. If you visualize the array response in the angle-Doppler
domain, a stationary target produces a response at a specified angle and zero Doppler.

You can use the phased.AngleDopplerResponse object to visualize the angle-Doppler
response of input data. The phased.AngleDopplerResponse object uses a
conventional narrowband (phase shift) beamformer and an FFT-based Doppler filter to
compute the angle-Doppler response.

Angle-Doppler Response of a Stationary Target at a Stationary Array

The array is a six-element uniform linear array (ULA) located at the global origin
[0;0;0]. The target is located at [5000; 5000; 0] and has a nonfluctuating radar
cross section (RCS) of 1 square meter. Both the array and target are stationary.

The array operates at 4 GHz with elements spaced at one-half the operating wavelength.
The array transmits a rectangular pulse 2 microseconds in duration with a pulse
repetition frequency (PRF) of 5 kHz.

Construct the objects needed to simulate the target response at the array.

hant = phased.IsotropicAntennaElement...

 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = physconst('LightSpeed')/4e9;

hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);

hwav = phased.RectangularWaveform('PulseWidth',2e-006,...

 'PRF',5e3,'SampleRate',1e6,'NumPulses',1);

 Angle-Doppler Response

7-3

hrad = phased.Radiator('Sensor',hula,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',4e9);

hcol = phased.Collector('Sensor',hula,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',4e9);

htxplat = phased.Platform('InitialPosition',[0;0;0],...

 'Velocity',[0;0;0]);

htgt = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');

htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

 'Velocity',[0;0;0]);

hspace = phased.FreeSpace('OperatingFrequency',4e9,...

 'TwoWayPropagation',false,'SampleRate',1e6);

hrx = phased.ReceiverPreamp('NoiseFigure',0,...

 'EnableInputPort',true,'SampleRate',1e6,'Gain',40);

htx = phased.Transmitter('PeakPower',1e4,...

 'InUseOutputPort',true,'Gain',40);

Propagate ten rectangular pulses to and from the target, and collect the responses at the
array.

PRF = 5e3;

NumPulses = 10;

wav = step(hwav);

tgtloc = htgtplat.InitialPosition;

txloc = htxplat.InitialPosition;

M = hwav.SampleRate*1/PRF;

N = hula.NumElements;

rxsig = zeros(M,N,NumPulses);

for n = 1:NumPulses

 % get angle to target

 [~,tgtang] = rangeangle(tgtloc,txloc);

 % transmit pulse

 [txsig,txstatus] = step(htx,wav);

 % radiate pulse

 txsig = step(hrad,txsig,tgtang);

 % propagate pulse to target

 txsig = step(hspace,txsig,txloc,tgtloc,[0;0;0],[0;0;0]);

 % reflect pulse off stationary target

 txsig = step(htgt,txsig);

 % propagate pulse to array

 txsig = step(hspace,txsig,tgtloc,txloc,[0;0;0],[0;0;0]);

 % collect pulse

 rxsig(:,:,n) = step(hcol,txsig,tgtang);

7 Space-Time Adaptive Processing (STAP)

7-4

 % receive pulse

 rxsig(:,:,n) = step(hrx,rxsig(:,:,n),~txstatus);

end

Determine and plot the angle-Doppler response. Place the string +Target at the
expected azimuth angle and Doppler frequency.

tgtdoppler = 0;

tgtLocation = global2localcoord(tgtloc,'rs',txloc);

tgtazang = tgtLocation(1);

tgtelang = tgtLocation(2);

tgtrng = tgtLocation(3);

tgtcell = val2ind(tgtrng,...

 physconst('LightSpeed')/(2*hwav.SampleRate));

snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim

hadresp = phased.AngleDopplerResponse('SensorArray',hula,...

 'OperatingFrequency',4e9, ...

 'PropagationSpeed',physconst('LightSpeed'),...

 'PRF',PRF, 'ElevationAngle',tgtelang);

plotResponse(hadresp,snapshot);

text(tgtazang,tgtdoppler,'+Target');

As expected, the angle-Doppler response shows the greatest response at zero Doppler and
45 degrees azimuth.

Angle-Doppler Response of a Stationary Target Return at a Moving Array

This example illustrates the nonzero Doppler shift exhibited by a stationary target in
the presence of array motion. In general, this nonzero shift complicates the detection of

 Angle-Doppler Response

7-5

slow-moving targets because the motion-induced Doppler shift and spread of the clutter
returns obscure the Doppler shifts of such targets.

The scenario in this example is identical to that of “Angle-Doppler Response of a
Stationary Target at a Stationary Array” on page 7-2, except that the ULA is
moving at a constant velocity. For convenience, the MATLAB® code to set up the
objects is repeated. Notice that the InitialPosition and Velocity properties of the
htxplat object have changed. The InitialPosition property value is set to simulate
an airborne ULA. The motivation for selecting the particular value of the Velocity
property is explained in “Applicability of DPCA Pulse Canceller” on page 7-8.

hant = phased.IsotropicAntennaElement...

 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = physconst('LightSpeed')/4e9;

hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);

hwav = phased.RectangularWaveform('PulseWidth',2e-006,...

 'PRF',5e3,'SampleRate',1e6,'NumPulses',1);

hrad = phased.Radiator('Sensor',hula,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',4e9);

hcol = phased.Collector('Sensor',hula,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',4e9);

vy = (hula.ElementSpacing*hwav.PRF)/2;

htxplat = phased.Platform('InitialPosition',[0;0;3e3],...

 'Velocity',[0;vy;0]);

htgt = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');

tgtvel = [0;0;0];

htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

 'Velocity',tgtvel);

hspace = phased.FreeSpace('OperatingFrequency',4e9,...

 'TwoWayPropagation',false,'SampleRate',1e6);

hrx = phased.ReceiverPreamp('NoiseFigure',0,...

 'EnableInputPort',true,'SampleRate',1e6,'Gain',40);

htx = phased.Transmitter('PeakPower',1e4,...

 'InUseOutputPort',true,'Gain',40);

Transmit ten rectangular pulses toward the target as the ULA is moving. Then, collect
the received echoes.

PRF = 5e3;

NumPulses = 10;

wav = step(hwav);

tgtloc = htgtplat.InitialPosition;

7 Space-Time Adaptive Processing (STAP)

7-6

M = hwav.SampleRate*1/PRF;

N = hula.NumElements;

rxsig = zeros(M,N,NumPulses);

fasttime = unigrid(0,1/hwav.SampleRate,1/PRF,'[)');

rangebins = (physconst('LightSpeed')*fasttime)/2;

for n = 1:NumPulses

 % move transmitter

 [txloc,txvel] = step(htxplat,1/PRF);

 % get angle to target

 [~,tgtang] = rangeangle(tgtloc,txloc);

 % transmit pulse

 [txsig,txstatus] = step(htx,wav);

 % radiate pulse

 txsig = step(hrad,txsig,tgtang);

 % propagate pulse to target

 txsig = step(hspace,txsig,txloc,tgtloc,txvel,tgtvel);

 % reflect pulse off stationary target

 txsig = step(htgt,txsig);

 % propagate pulse to array

 txsig = step(hspace,txsig,tgtloc,txloc,tgtvel,txvel);

 % collect pulse

 rxsig(:,:,n) = step(hcol,txsig,tgtang);

 % receive pulse

 rxsig(:,:,n) = step(hrx,rxsig(:,:,n),~txstatus);

end

Calculate the target angles and range with respect to the ULA. Then, calculate the
Doppler shift induced by the motion of the phased array.

sp = radialspeed(tgtloc,tgtvel,txloc,txvel);

tgtdoppler = 2*speed2dop(sp,lambda);

tgtLocation = global2localcoord(tgtloc,'rs',txloc);

tgtazang = tgtLocation(1);

tgtelang = tgtLocation(2);

tgtrng = tgtLocation(3);

The two-way Doppler shift is approximately 1626 Hz. The azimuth angle is 45 degrees
and is identical to the stationary ULA example.

Plot the angle-Doppler response.

tgtcell = val2ind(tgtrng,...

 physconst('LightSpeed')/(2*hwav.SampleRate));

snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim

 Angle-Doppler Response

7-7

hadresp = phased.AngleDopplerResponse('SensorArray',hula,...

 'OperatingFrequency',4e9, ...

 'PropagationSpeed',physconst('LightSpeed'),...

 'PRF',PRF, 'ElevationAngle',tgtelang);

plotResponse(hadresp,snapshot);

text(tgtazang,tgtdoppler,'+Target');

The angle-Doppler response shows the greatest response at 45 degrees azimuth and the
expected Doppler shift.

7 Space-Time Adaptive Processing (STAP)

7-8

Displaced Phase Center Antenna (DPCA) Pulse Canceller

In this section...

“When to Use the DPCA Pulse Canceller” on page 7-8
“Example: DPCA Pulse Canceller for Clutter Rejection” on page 7-8

When to Use the DPCA Pulse Canceller

In a moving target indication (MTI) radar, clutter returns can make it more difficult
to detect and track the targets of interest. A rudimentary way to mitigate the effects
of clutter returns in such a system is to implement a displaced phase center antenna
(DPCA) pulse canceller on the slow-time data.

You can implement a DPCA pulse canceller with phased.DPCACanceller. This
implementation assumes that the entire array is used on transmit. On receive, the array
is divided into two subarrays. The phase centers of the subarrays are separated by twice
the distance the platform moves in one pulse repetition interval.

Applicability of DPCA Pulse Canceller

The DPCA pulse canceller is applicable when both these conditions are true:

• Clutter is stationary across pulses.
• The motion satisfies

vT d= / 2

where:

• v indicates the speed of the platform
• T represents the pulse repetition interval
• d indicates the inter-element spacing of the array

Example: DPCA Pulse Canceller for Clutter Rejection

This example implements a DPCA pulse canceller for clutter rejection. Assume you have
an airborne radar platform modeled by a six-element ULA operating at 4 GHz. The array
elements are spaced at one-half the wavelength of the 4 GHz carrier frequency. The

 Displaced Phase Center Antenna (DPCA) Pulse Canceller

7-9

radar emits ten rectangular pulses two microseconds in duration with a PRF of 5 kHz.
The platform moves along the array axis with a speed equal to one-half the product of
the element spacing and the PRF. As a result, the condition in Equation 7-1 applies. The
target has a nonfluctuating RCS of 1 square meter and moves with a constant velocity
vector of [15;15;0]. The following MATLAB code constructs the required System
objects to simulate the signal received by the ULA.
PRF = 5e3;

fc = 4e9; fs = 1e6;

c = physconst('LightSpeed');

hant = phased.IsotropicAntennaElement...

 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = c/fc;

hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);

hwav = phased.RectangularWaveform('PulseWidth',2e-6,...

 'PRF',PRF,'SampleRate',fs,'NumPulses',1);

hrad = phased.Radiator('Sensor',hula,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc);

hcol = phased.Collector('Sensor',hula,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc);

vy = (hula.ElementSpacing * PRF)/2;

htxplat = phased.Platform('InitialPosition',[0;0;3e3],...

 'Velocity',[0;vy;0]);

hclutter = phased.ConstantGammaClutter('Sensor',hula,...

 'PropagationSpeed',hrad.PropagationSpeed,...

 'OperatingFrequency',hrad.OperatingFrequency,...

 'SampleRate',fs,...

 'TransmitSignalInputPort',true,...

 'PRF',PRF,...

 'Gamma',surfacegamma('woods',hrad.OperatingFrequency),...

 'EarthModel','Flat',...

 'BroadsideDepressionAngle',0,...

 'MaximumRange',hrad.PropagationSpeed/(2*PRF),...

 'PlatformHeight',htxplat.InitialPosition(3),...

 'PlatformSpeed',norm(htxplat.Velocity),...

 'PlatformDirection',[90;0]);

htgt = phased.RadarTarget('MeanRCS',1,...

 'Model','Nonfluctuating','OperatingFrequency',fc);

htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

 'Velocity',[15;15;0]);

hspace = phased.FreeSpace('OperatingFrequency',fc,...

 'TwoWayPropagation',false,'SampleRate',fs);

hrx = phased.ReceiverPreamp('NoiseFigure',0,...

 'EnableInputPort',true,'SampleRate',fs,'Gain',40);

htx = phased.Transmitter('PeakPower',1e4,...

 'InUseOutputPort',true,'Gain',40);

Propagate the ten rectangular pulses to and from the target, and collect the responses at
the array. Also, compute clutter echoes using the constant gamma model with a gamma
value corresponding to wooded terrain.

7 Space-Time Adaptive Processing (STAP)

7-10

NumPulses = 10;

wav = step(hwav);

M = fs/PRF;

N = hula.NumElements;

rxsig = zeros(M,N,NumPulses);

csig = zeros(M,N,NumPulses);

fasttime = unigrid(0,1/fs,1/PRF,'[)');

rangebins = (c * fasttime)/2;

hclutter.SeedSource = 'Property';

hclutter.Seed = 5;

for n = 1:NumPulses

 [txloc,txvel] = step(htxplat,1/PRF); % move transmitter

 [tgtloc,tgtvel] = step(htgtplat,1/PRF); % move target

 [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target

 [txsig1,txstatus] = step(htx,wav); % transmit pulse

 csig(:,:,n) = step(hclutter,txsig1(abs(txsig1)>0)); % collect clutter

 txsig = step(hrad,txsig1,tgtang); % radiate pulse

 txsig = step(hspace,txsig,txloc,tgtloc,...

 txvel,tgtvel); % propagate to target

 txsig = step(htgt,txsig); % reflect off target

 txsig = step(hspace,txsig,tgtloc,txloc,...

 tgtvel,txvel); % propagate to array

 rxsig(:,:,n) = step(hcol,txsig,tgtang); % collect pulse

 rxsig(:,:,n) = step(hrx,rxsig(:,:,n) + csig(:,:,n),...

 ~txstatus); % receive pulse plus clutter return

end

Determine the target's range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc,tgtvel,txloc,txvel);

tgtdoppler = 2*speed2dop(sp,lambda);

tgtLocation = global2localcoord(tgtloc,'rs',txloc);

tgtazang = tgtLocation(1);

tgtelang = tgtLocation(2);

tgtrng = tgtLocation(3);

tgtcell = val2ind(tgtrng,c/(2 * fs));

Use noncoherent pulse integration to visualize the signal received by the ULA for the
first of the ten pulses. Mark the target's range gate with a vertical dashed line.

firstpulse = pulsint(rxsig(:,:,1),'noncoherent');

figure;

plot([tgtrng tgtrng],[0 0.1],'-.',rangebins,firstpulse);

title('Noncoherent Integration of 1st Pulse at the ULA');

xlabel('Range (m)'); ylabel('Magnitude');

 Displaced Phase Center Antenna (DPCA) Pulse Canceller

7-11

The large-magnitude clutter returns obscure the presence of the target. Apply the DPCA
pulse canceller to reject the clutter.
hstap = phased.DPCACanceller('SensorArray',hula,'PRF',PRF,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc,...

 'Direction',[0;0],'Doppler',tgtdoppler,...

 'WeightsOutputPort',true);

[y,w] = step(hstap,rxsig,tgtcell);

Plot the result of applying the DPCA pulse canceller. Mark the target range gate with a
vertical dashed line.
figure;

plot([tgtrng,tgtrng],[0 3.5e-5],'-.',rangebins,abs(y));

title('DPCA Canceller Output');

xlabel('Range (m)'), ylabel('Magnitude');

7 Space-Time Adaptive Processing (STAP)

7-12

The DPCA pulse canceller has significantly rejected the clutter. As a result, the target is
visible at the expected range gate.

 Adaptive Displaced Phase Center Antenna Pulse Canceller

7-13

Adaptive Displaced Phase Center Antenna Pulse Canceller

In this section...

“When to Use the Adaptive DPCA Pulse Canceller” on page 7-13
“Example: Adaptive DPCA Pulse Canceller” on page 7-13

When to Use the Adaptive DPCA Pulse Canceller

Consider an airborne radar system that needs to suppress clutter returns and possibly
jammer interference. Under any of the following conditions, you might choose an
adaptive DPCA (ADPCA) pulse canceller for suppressing these effects.

• Jamming and other interference effects are substantial. The DPCA pulse canceller
is susceptible to interference because the DPCA pulse canceller does not use the
received data.

• The sample matrix inversion (SMI) algorithm is inapplicable because of
computational expense or a rapidly changing environment.

The phased.ADPCAPulseCanceller object implements an ADPCA pulse canceller.
This pulse canceller uses the data received from two consecutive pulses to estimate the
space-time interference covariance matrix. In particular, the object lets you specify:

• The number of training cells. The algorithm uses training cells to estimate the
interference. In general, a larger number of training cells leads to a better estimate of
interference.

• The number of guard cells close to the target cells. The algorithm recognizes guard
cells to prevent target returns from contaminating the estimate of the interference.

Example: Adaptive DPCA Pulse Canceller

This example implements an adaptive DPCA pulse canceller for clutter and interference
rejection. The scenario is identical to the one in “Example: DPCA Pulse Canceller for
Clutter Rejection” on page 7-8 except that a stationary broadband barrage jammer is
added at [3.5e3; 1e3; 0]. The jammer has an effective radiated power of 1 kw.

To repeat the scenario for convenience, the airborne radar platform is a six-element
ULA operating at 4 GHz. The array elements are spaced at one-half the wavelength of
the 4 GHz carrier frequency. The radar emits ten rectangular pulses two μs in duration
with a PRF of 5 kHz. The platform is moving along the array axis with a speed equal

7 Space-Time Adaptive Processing (STAP)

7-14

to one-half the product of the element spacing and the PRF. As a result, the condition
in Equation 7-1 applies. The target has a nonfluctuating RCS of 1 square meter and is
moving with a constant velocity vector of [15;15;0].

The following commands construct the required System objects to simulate the scenario.
PRF = 5e3;

fc = 4e9; fs = 1e6;

c = physconst('LightSpeed');

hant = phased.IsotropicAntennaElement...

 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = c/fc;

hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);

hwav = phased.RectangularWaveform('PulseWidth', 2e-6,...

 'PRF',PRF,'SampleRate',fs,'NumPulses',1);

hrad = phased.Radiator('Sensor',hula,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc);

hcol = phased.Collector('Sensor',hula,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc);

vy = (hula.ElementSpacing * PRF)/2;

htxplat = phased.Platform('InitialPosition',[0;0;3e3],...

 'Velocity',[0;vy;0]);

hclutter = phased.ConstantGammaClutter('Sensor',hula,...

 'PropagationSpeed',hrad.PropagationSpeed,...

 'OperatingFrequency',hrad.OperatingFrequency,...

 'SampleRate',fs,...

 'TransmitSignalInputPort',true,...

 'PRF',PRF,...

 'Gamma',surfacegamma('woods',hrad.OperatingFrequency),...

 'EarthModel','Flat',...

 'BroadsideDepressionAngle',0,...

 'MaximumRange',hrad.PropagationSpeed/(2*PRF),...

 'PlatformHeight',htxplat.InitialPosition(3),...

 'PlatformSpeed',norm(htxplat.Velocity),...

 'PlatformDirection',[90;0]);

htgt = phased.RadarTarget('MeanRCS',1,...

 'Model','Nonfluctuating','OperatingFrequency',fc);

htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

 'Velocity',[15;15;0]);

hjammer = phased.BarrageJammer('ERP',1e3,'SamplesPerFrame',200);

hjammerplat = phased.Platform(...

 'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);

hspace = phased.FreeSpace('OperatingFrequency',fc,...

 'TwoWayPropagation',false,'SampleRate',fs);

hrx = phased.ReceiverPreamp('NoiseFigure',0,...

 'EnableInputPort',true,'SampleRate',fs,'Gain',40);

htx = phased.Transmitter('PeakPower',1e4,...

 'InUseOutputPort',true,'Gain',40);

Propagate the ten rectangular pulses to and from the target and collect the responses at
the array. Compute clutter echoes using the constant gamma model with a gamma value

 Adaptive Displaced Phase Center Antenna Pulse Canceller

7-15

corresponding to wooded terrain. Also, propagate the jamming signal from the jammer
location to the airborne ULA.
NumPulses = 10;

wav = step(hwav);

M = fs/PRF;

N = hula.NumElements;

rxsig = zeros(M,N,NumPulses);

csig = zeros(M,N,NumPulses);

jsig = zeros(M,N,NumPulses);

fasttime = unigrid(0,1/fs,1/PRF,'[)');

rangebins = (c * fasttime)/2;

hclutter.SeedSource = 'Property';

hclutter.Seed = 40543;

hjammer.SeedSource = 'Property';

hjammer.Seed = 96703;

hrx.SeedSource = 'Property';

hrx.Seed = 56113;

jamloc = hjammerplat.InitialPosition;

for n = 1:NumPulses

 [txloc,txvel] = step(htxplat,1/PRF); % move transmitter

 [tgtloc,tgtvel] = step(htgtplat,1/PRF); % move target

 [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target

 [txsig,txstatus] = step(htx,wav); % transmit pulse

 csig(:,:,n) = step(hclutter,txsig(abs(txsig)>0)); % collect clutter

 txsig = step(hrad,txsig,tgtang); % radiate pulse

 txsig = step(hspace,txsig,txloc,tgtloc,...

 txvel,tgtvel); % propagate pulse to target

 txsig = step(htgt,txsig); % reflect off target

 txsig = step(hspace,txsig,tgtloc,txloc,...

 tgtvel,txvel); % propagate to array

 rxsig(:,:,n) = step(hcol,txsig,tgtang); % collect pulse

 jamsig = step(hjammer); % generate jammer signal

 [~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter

 jamsig = step(hspace,jamsig,jamloc,txloc,...

 [0;0;0],txvel); % propagate jammer signal

 jsig(:,:,n) = step(hcol,jamsig,jamang); % collect jammer signal

 rxsig(:,:,n) = step(hrx,...

 rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...

 ~txstatus); % receive pulse plus clutter return plus jammer signal

end

Determine the target's range, range gate, and two-way Doppler shift.
sp = radialspeed(tgtloc, htgtplat.Velocity, ...

 txloc, htxplat.Velocity);

tgtdoppler = 2*speed2dop(sp,lambda);

tgtLocation = global2localcoord(tgtloc,'rs',txloc);

tgtazang = tgtLocation(1);

tgtelang = tgtLocation(2);

tgtrng = tgtLocation(3);

7 Space-Time Adaptive Processing (STAP)

7-16

tgtcell = val2ind(tgtrng,c/(2 * fs));

Process the array responses using the nonadaptive DPCA pulse canceller. To do so,
construct the DPCA object, and apply it to the received signals.
hstap = phased.DPCACanceller('SensorArray',hula,'PRF',PRF,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc,...

 'Direction',[0;0],'Doppler',tgtdoppler,...

 'WeightsOutputPort',true);

[y,w] = step(hstap,rxsig,tgtcell);

Plot the DPCA result with the target range marked by a vertical dashed line. Notice how
the presence of the interference signal has obscured the target.
figure;

plot([tgtrng,tgtrng],[0 7e-2],'-.',rangebins,abs(y));

axis tight;

xlabel('Range (m)'), ylabel('Magnitude');

title('DPCA Canceller Output with Jamming')

Apply the adaptive DPCA pulse canceller. Use 100 training cells and 4 guard cells, two
on each side of the target range gate.
hstap = phased.ADPCACanceller('SensorArray',hula,'PRF',PRF,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc,...

 'Direction',[0;0],'Doppler',tgtdoppler,...

 'WeightsOutputPort',true,'NumGuardCells',4,...

 'NumTrainingCells',100);

[y_adpca,w_adpca] = step(hstap,rxsig,tgtcell);

Plot the result with the target range marked by a vertical dashed line. Notice how the
adaptive DPCA pulse canceller enables you to detect the target in the presence of the
jamming signal.

 Adaptive Displaced Phase Center Antenna Pulse Canceller

7-17

figure;

plot([tgtrng,tgtrng],[0 4e-7],'-.',rangebins,abs(y_adpca));

axis tight;

title('ADPCA Canceller Output with Jamming');

xlabel('Range (m)'), ylabel('Magnitude');

Examine the angle-Doppler response. Notice the presence of the clutter ridge in the
angle-Doppler plane and the null at the jammer’s broadside angle for all Doppler
frequencies.
hadresp = phased.AngleDopplerResponse('SensorArray',hula,...

 'OperatingFrequency',fc,...

 'PropagationSpeed',c,...

 'PRF',PRF,'ElevationAngle',tgtelang);

figure;

plotResponse(hadresp,w_adpca);

title('Angle-Doppler Response with ADPCA Pulse Cancellation');

text(az2broadside(jamang(1),jamang(2)) + 10,...

 0,'\leftarrow Interference Null')

7 Space-Time Adaptive Processing (STAP)

7-18

Sample Matrix Inversion (SMI) Beamformer

In this section...

“When to Use the SMI Beamformer” on page 7-18
“Example: Sample Matrix Inversion (SMI) Beamformer” on page 7-18

When to Use the SMI Beamformer

In situations where an airborne radar system needs to suppress clutter returns and
jammer interference, the system needs a more sophisticated algorithm than a DPCA
pulse canceller can provide. One option is the sample matrix inversion (SMI) algorithm.
SMI is the optimum STAP algorithm and is often used as a baseline for comparison with
other algorithms.

The SMI algorithm is computationally expensive and assumes a stationary environment
across many pulses. If you need to suppress clutter returns and jammer interference with
less computation, or in a rapidly changing environment, consider using an ADPCA pulse
canceller instead.

The phased.STAPSMIBeamformer object implements the SMI algorithm. In particular,
the object lets you specify:

• The number of training cells. The algorithm uses training cells to estimate the
interference. In general, a larger number of training cells leads to a better estimate of
interference.

• The number of guard cells close to the target cells. The algorithm recognizes guard
cells to prevent target returns from contaminating the estimate of the interference.

Example: Sample Matrix Inversion (SMI) Beamformer

This scenario is identical to the one presented in “Example: Adaptive DPCA Pulse
Canceller” on page 7-13. You can run the code for both examples to compare the ADPCA
pulse canceller with the SMI beamformer. The example details and code are repeated for
convenience.

To repeat the scenario for convenience, the airborne radar platform is a six-element ULA
operating at 4 GHz. The array elements are spaced at one-half the wavelength of the 4

 Sample Matrix Inversion (SMI) Beamformer

7-19

GHz carrier frequency. The radar emits ten rectangular pulses two μs in duration with
a PRF of 5 kHz. The platform is moving along the array axis with a speed equal to one-
half the product of the element spacing and the PRF. The target has a nonfluctuating
RCS of 1 square meter and is moving with a constant velocity vector of [15;15;0]. A
stationary broadband barrage jammer is located at [3.5e3; 1e3; 0]. The jammer has
an effective radiated power of 1 kw.

The following commands construct the required System objects to simulate the scenario.
PRF = 5e3;

fc = 4e9; fs = 1e6;

c = physconst('LightSpeed');

hant = phased.IsotropicAntennaElement...

 ('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = c/fc;

hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);

hwav = phased.RectangularWaveform('PulseWidth', 2e-6,...

 'PRF',PRF,'SampleRate',fs,'NumPulses',1);

hrad = phased.Radiator('Sensor',hula,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc);

hcol = phased.Collector('Sensor',hula,...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc);

vy = (hula.ElementSpacing * PRF)/2;

htxplat = phased.Platform('InitialPosition',[0;0;3e3],...

 'Velocity',[0;vy;0]);

hclutter = phased.ConstantGammaClutter('Sensor',hula,...

 'PropagationSpeed',hrad.PropagationSpeed,...

 'OperatingFrequency',hrad.OperatingFrequency,...

 'SampleRate',fs,...

 'TransmitSignalInputPort',true,...

 'PRF',PRF,...

 'Gamma',surfacegamma('woods',hrad.OperatingFrequency),...

 'EarthModel','Flat',...

 'BroadsideDepressionAngle',0,...

 'MaximumRange',hrad.PropagationSpeed/(2*PRF),...

 'PlatformHeight',htxplat.InitialPosition(3),...

 'PlatformSpeed',norm(htxplat.Velocity),...

 'PlatformDirection',[90;0]);

htgt = phased.RadarTarget('MeanRCS',1,...

 'Model','Nonfluctuating','OperatingFrequency',fc);

htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

 'Velocity',[15;15;0]);

hjammer = phased.BarrageJammer('ERP',1e3,'SamplesPerFrame',200);

hjammerplat = phased.Platform(...

 'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);

hspace = phased.FreeSpace('OperatingFrequency',fc,...

 'TwoWayPropagation',false,'SampleRate',fs);

hrx = phased.ReceiverPreamp('NoiseFigure',0,...

 'EnableInputPort',true,'SampleRate',fs,'Gain',40);

htx = phased.Transmitter('PeakPower',1e4,...

 'InUseOutputPort',true,'Gain',40);

7 Space-Time Adaptive Processing (STAP)

7-20

Propagate the ten rectangular pulses to and from the target and collect the responses at
the array. Compute clutter echoes using the constant gamma model with a gamma value
corresponding to wooded terrain. Also, propagate the jamming signal from the jammer
location to the airborne ULA.
NumPulses = 10;

wav = step(hwav);

M = fs/PRF;

N = hula.NumElements;

rxsig = zeros(M,N,NumPulses);

csig = zeros(M,N,NumPulses);

jsig = zeros(M,N,NumPulses);

fasttime = unigrid(0,1/fs,1/PRF,'[)');

rangebins = (c * fasttime)/2;

hclutter.SeedSource = 'Property';

hclutter.Seed = 40543;

hjammer.SeedSource = 'Property';

hjammer.Seed = 96703;

hrx.SeedSource = 'Property';

hrx.Seed = 56113;

jamloc = hjammerplat.InitialPosition;

for n = 1:NumPulses

 [txloc,txvel] = step(htxplat,1/PRF); % move transmitter

 [tgtloc,tgtvel] = step(htgtplat,1/PRF); % move target

 [~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target

 [txsig,txstatus] = step(htx,wav); % transmit pulse

 csig(:,:,n) = step(hclutter,txsig(abs(txsig)>0)); % collect clutter

 txsig = step(hrad,txsig,tgtang); % radiate pulse

 txsig = step(hspace,txsig,txloc,tgtloc,...

 txvel,tgtvel); % propagate pulse to target

 txsig = step(htgt,txsig); % reflect off target

 txsig = step(hspace,txsig,tgtloc,txloc,...

 tgtvel,txvel); % propagate to array

 rxsig(:,:,n) = step(hcol,txsig,tgtang); % collect pulse

 jamsig = step(hjammer); % generate jammer signal

 [~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter

 jamsig = step(hspace,jamsig,jamloc,txloc,...

 [0;0;0],txvel); % propagate jammer signal

 jsig(:,:,n) = step(hcol,jamsig,jamang); % collect jammer signal

 rxsig(:,:,n) = step(hrx,...

 rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...

 ~txstatus); % receive pulse plus clutter return plus jammer signal

end

Determine the target's range, range gate, and two-way Doppler shift.
sp = radialspeed(tgtloc, htgtplat.Velocity, ...

 txloc, htxplat.Velocity);

tgtdoppler = 2*speed2dop(sp,lambda);

tgtLocation = global2localcoord(tgtloc,'rs',txloc);

 Sample Matrix Inversion (SMI) Beamformer

7-21

tgtazang = tgtLocation(1);

tgtelang = tgtLocation(2);

tgtrng = tgtLocation(3);

tgtcell = val2ind(tgtrng,c/(2 * fs));

Construct an SMI beamformer object. Use 100 training cells, 50 on each side of the target
range gate. Use four guard cells, two range gates in front of the target cell and two range
gates beyond the target cell. Obtain the beamformer response and weights.
tgtang = [tgtazang; tgtelang];

hstap = phased.STAPSMIBeamformer('SensorArray',hula,...

 'PRF',PRF,'PropagationSpeed',c,...

 'OperatingFrequency',fc,...

 'Direction',tgtang,'Doppler',tgtdoppler,...

 'WeightsOutputPort',true,...

 'NumGuardCells',4,'NumTrainingCells',100);

[y,weights] = step(hstap,rxsig,tgtcell);

Plot the resulting array output after beamforming.
figure;

plot([tgtrng,tgtrng],[0 5e-6],'-.',rangebins,abs(y));

axis tight;

title('SMI Beamformer Output');

xlabel('Range (meters)'); ylabel('Magnitude');

Plot the angle-Doppler response with the beamforming weights.
% Construct an angle-Doppler response object and apply the

% beamforming weights

hresp = phased.AngleDopplerResponse('SensorArray',hula,...

 'OperatingFrequency',4e9,'PRF',PRF,...

 'PropagationSpeed',physconst('LightSpeed'));

figure;

plotResponse(hresp,weights);

7 Space-Time Adaptive Processing (STAP)

7-22

title('Angle-Doppler Response with SMI Beamforming Weights');

8

Detection

• “Neyman-Pearson Hypothesis Testing” on page 8-2
• “Receiver Operating Characteristic (ROC) Curves” on page 8-7
• “Monte-Carlo ROC Simulation” on page 8-12
• “Matched Filtering” on page 8-22
• “Stretch Processing” on page 8-28
• “FMCW Range Estimation” on page 8-30
• “Range-Doppler Response” on page 8-32
• “Constant False-Alarm Rate (CFAR) Detectors” on page 8-38
• “Measure Intensity Levels Using the Intensity Scope ” on page 8-45

8 Detection

8-2

Neyman-Pearson Hypothesis Testing

In this section...

“Purpose of Hypothesis Testing” on page 8-2
“Support for Neyman-Pearson Hypothesis Testing” on page 8-2
“Threshold for Real-Valued Signal in White Gaussian Noise” on page 8-3
“Threshold for Two Pulses of Real-Valued Signal in White Gaussian Noise” on page
8-4
“Threshold for Complex-Valued Signals in Complex White Gaussian Noise” on page
8-5

Purpose of Hypothesis Testing

In phased-array applications, you sometimes need to decide between two competing
hypotheses to determine the reality underlying the data the array receives. For example,
suppose one hypothesis, called the null hypothesis, states that the observed data consists
of noise only. Suppose another hypothesis, called the alternative hypothesis, states
that the observed data consists of a deterministic signal plus noise. To decide, you
must formulate a decision rule that uses specified criteria to choose between the two
hypotheses.

Support for Neyman-Pearson Hypothesis Testing

When you use Phased Array System Toolbox software for applications such as radar and
sonar, you typically use the Neyman-Pearson (NP) optimality criterion to formulate your
hypothesis test.

When you choose the NP criterion, you can use npwgnthresh to determine the threshold
for the detection of deterministic signals in white Gaussian noise. The optimal decision
rule derives from a likelihood ratio test (LRT). An LRT chooses between the null and
alternative hypotheses based on a ratio of conditional probabilities.

npwgnthresh enables you to specify the maximum false-alarm probability as a
constraint. A false alarm means determining that the data consists of a signal plus noise,
when only noise is present.

For details about the statistical assumptions the npwgnthresh function makes, see the
reference page for that function.

 Neyman-Pearson Hypothesis Testing

8-3

Threshold for Real-Valued Signal in White Gaussian Noise

This example shows how to compute empirically the probability of false alarm for a real-
valued signal in white Gaussian noise.

Determine the required signal-to-noise (SNR) in decibels for the NP detector when the
maximum tolerable false-alarm probability is 10^-3.

Pfa = 1e-3;

T = npwgnthresh(Pfa,1,'real');

Determine the actual detection threshold corresponding to the desired false-alarm
probability, assuming the variance is 1.

variance = 1;

threshold = sqrt(variance * db2pow(T));

Verify empirically that the detection threshold results in the desired false-alarm
probability under the null hypothesis. To do so, generate 1 million samples of a Gaussian
random variable, and determine the proportion of samples that exceed the threshold.

rng default

N = 1e6;

x = sqrt(variance) * randn(N,1);

falsealarmrate = sum(x > threshold)/N

falsealarmrate =

 9.9500e-04

Plot the first 10,000 samples. The red horizontal line shows the detection threshold.

x1 = x(1:1e4);

plot(x1)

line([1 length(x1)],[threshold threshold],'Color','red')

xlabel('Sample')

ylabel('Value')

8 Detection

8-4

You can see that few sample values exceed the threshold. This result is expected because
of the small false-alarm probability.

Threshold for Two Pulses of Real-Valued Signal in White Gaussian Noise

This example shows how to empirically verify the probability of false alarm in a system
that integrates two real-valued pulses. In this scenario, each integrated sample is the
sum of two samples, one from each pulse.

Determine the required SNR for the NP detector when the maximum tolerable false-
alarm probability is .

pfa = 1e-3;

 Neyman-Pearson Hypothesis Testing

8-5

T = npwgnthresh(pfa,2,'real');

Generate two sets of one million samples of a Gaussian random variable.

rng default

variance = 1;

N = 1e6;

pulse1 = sqrt(variance)*randn(N,1);

pulse2 = sqrt(variance)*randn(N,1);

intpuls = pulse1 + pulse2;

Compute the proportion of samples that exceed the threshold.

threshold = sqrt(variance*db2pow(T));

falsealarmrate = sum(intpuls > threshold)/N

falsealarmrate =

 9.8900e-04

The empirical false alarm rate is very close to .001

Threshold for Complex-Valued Signals in Complex White Gaussian Noise

This example shows how to empirically verify the probability of false alarm in a system
that uses coherent detection of complex-valued signals. Coherent detection means that
the system utilizes information about the phase of the complex-valued signals.

Determine the required SNR for the NP detector in a coherent detection scheme with one
sample. Use a maximum tolerable false-alarm probability of .

pfa = 1e-3;

T = npwgnthresh(pfa,1,'coherent');

Test that this threshold empirically results in the correct false-alarm rate The sufficient
statistic in the complex-valued case is the real part of the received sample.

rng default

variance = 1;

N = 1e6;

x = sqrt(variance/2)*(randn(N,1)+1j*randn(N,1));

threshold = sqrt(variance*db2pow(T));

8 Detection

8-6

falsealarmrate = sum(real(x)>threshold)/length(x)

falsealarmrate =

 9.9500e-04

 Receiver Operating Characteristic (ROC) Curves

8-7

Receiver Operating Characteristic (ROC) Curves

ROC curves present graphical summaries of a detector's performance. You can generate
ROC curves using the functions rocpfa and rocsnr.

If you are interested in examining the effect of varying the false-alarm probability on the
probability of detection for a fixed SNR, you can use rocsnr. For example, the threshold
SNR for the Neyman-Pearson detector of a single sample in real-valued Gaussian noise
is approximately 13.5 dB. Use rocsnr to demonstrate how the probability of detection
varies as a function of the false-alarm rate at that SNR.

T = npwgnthresh(1e-6,1,'real');

rocsnr(T,'SignalType','real')

The ROC curve enables you to easily read off the probability of detection for a given false-
alarm rate.

You can use rocsnr to examine detector performance for different received signal types
at a fixed SNR.

SNR = 13.54;

[Pd_real,Pfa_real] = rocsnr(SNR,'SignalType','real',...

 'MinPfa',1e-8);

[Pd_coh,Pfa_coh] = rocsnr(SNR,...

8 Detection

8-8

 'SignalType','NonfluctuatingCoherent',...

 'MinPfa',1e-8);

[Pd_noncoh,Pfa_noncoh] = rocsnr(SNR,'SignalType',...

 'NonfluctuatingNoncoherent','MinPfa',1e-8);

figure;

semilogx(Pfa_real,Pd_real); hold on; grid on;

semilogx(Pfa_coh,Pd_coh,'r');

semilogx(Pfa_noncoh,Pd_noncoh,'k');

xlabel('False-Alarm Probability');

ylabel('Probability of Detection');

legend('Real','Coherent','Noncoherent','location','southeast');

title('ROC Curve Comparison for Nonfluctuating RCS Target');

The ROC curves clearly demonstrate the superior probability of detection performance
for coherent and noncoherent detectors over the real-valued case.

The rocsnr function accepts an SNR vector input enabling you to quickly examine a
number of ROC curves.

SNRs = (6:2:12);

figure;

rocsnr(SNRs,'SignalType','NonfluctuatingNoncoherent');

 Receiver Operating Characteristic (ROC) Curves

8-9

The graph shows that—as the SNR increases—the supports of the probability
distributions under the null and alternative hypotheses become more disjoint. Therefore,
for a given false-alarm probability, the probability of detection increases.

You can examine the probability of detection as a function of SNR for a fixed false-alarm
probability with rocpfa.

To obtain ROC curves for a Swerling I target model at false-alarm probabilities of [1e-6
1e-4 1e-2 1e-1], enter:

Pfa = [1e-6 1e-4 1e-2 1e-1];

figure;

rocpfa(Pfa,'SignalType','Swerling1');

8 Detection

8-10

Use rocpfa to examine the effect of SNR on the probability of detection for a detector
using noncoherent integration with a false-alarm probability of 1e-4. Assume the target
has a nonfluctuating RCS and that you are integrating over 5 pulses.

[Pd,SNR] = rocpfa(1e-4,...

 'SignalType','NonfluctuatingNoncoherent',...

 'NumPulses',5);

figure;

plot(SNR,Pd); xlabel('SNR (dB)');

ylabel('Probability of Detection'); grid on;

title('Nonfluctuating Noncoherent Detector (5 Pulses)');

 Receiver Operating Characteristic (ROC) Curves

8-11

Related Examples
• Detector Performance Analysis using ROC Curves

../examples/detector-performance-analysis-using-roc-curves.html

8 Detection

8-12

Monte-Carlo ROC Simulation

This example shows how to generate a receiver operating characteristic (ROC) curve of
a radar system using a Monte-Carlo simulation. The receiver operating characteristic
determines how well the system can detect targets while rejecting large spurious signal
values when a target is absent (false alarms). A detection system will declare presence
or absence of a target by comparing the received signal value to a preset threshold. The
probability of detection (Pd) of a target is the probability that the instantaneous signal
value is larger than the threshold whenever a target is actually present. The probability
of false alarm (Pfa) is the probability that the signal value is larger than the threshold
when a target is absent. In this case, the signal is due to noise and its properties depend
on the noise statistics. The Monte-Carlo simulation generates a very large number of
radar returns with and without a target present. The simulation computes Pd and Pfa
are by counting the proportion of signal values in each case that exceed the threshold.

A ROC curve plots Pd as a function of Pfa. The shape of a ROC curve depends on the
received SNR of the signal. If the arriving signal SNR is known, then the ROC curve
shows how well the system performs in terms of Pd and Pfa. If you specify Pd and Pfa,
then you can determine how much power is needed to acheive that requirement.

You can use the function rocsnr to compute theoretical ROC curves. This example
shows a ROC curve generated by a Monte-Carlo simulation of a single-antenna radar
system and compares that curve with a theoretical curve.

Specify Radar Requirements

Set the desired probability of detection to be 0.9 and the probability of false alarm to be
. Set the maximum range of the radar to 4000 meters and the range resolution to

50 meters. Set the actual target range to 3000 meters. Set the target radar cross-section
to 1.5 square meters and set the operating frequency to 10 GHz. All computations are
performed in baseband.

c = physconst('LightSpeed');

pd = 0.9;

pfa = 1e-6;

max_range = 4000;

target_range = 3000.0;

range_res = 50;

tgt_rcs = 1.5;

fc = 10e9;

lambda = c/fc;

 Monte-Carlo ROC Simulation

8-13

Any simulation that computes Pfa and pd requires processing of many signals. To keep
memory requirements low, process the signals in chunks of pulses. Set the number of
pulses to process to 45000 and set the size of each chunk to 10000.

Npulse = 45000;

Npulsebuffsize = 10000;

Select Waveform and Signal Parameters

Calculate the waveform pulse bandwidth using the pulse range resolution. Calculate the
pulse repetition frequency from the maximum range. Because the signal is baseband, set
the sampling frequency to twice the bandwidth. Calculate the pulse duration from the
pulse bandwidth.

pulse_bw = c/(2*range_res);

prf = c/(2*max_range);

fs = 2*pulse_bw;

pulse_duration = 10/pulse_bw;

sWav = phased.LinearFMWaveform('PulseWidth',pulse_duration,...

 'SampleRate',fs,'SweepBandwidth',...

 pulse_bw,'PRF',prf);

Achieving a particular Pd and Pfa requires that sufficient signal power arrive at the
receiver after the target reflects the signal. Compute the minimum SNR needed to
achieve the specified probability of false alarm and probability of detection by using the
Albersheim equation.

snr_min = albersheim(pd,pfa);

To to achieve this SNR, sufficient power must be transmitted to the target. Use the
radareqpow function to estimate the peak transmit power required to achieve the
specified SNR in dB for the target at a range of 3000 meters. The received signal
also depends on the target radar cross-section (RCS). which is assumed to follow a
nonfluctuating model (Swerling 0). Set the radar to have identical transmit and receive
gains of 20 dB.

txrx_gain = 20;

peak_power = radareqpow(lambda,target_range,...

 snr_min,pulse_duration,'RCS',tgt_rcs,...

 'Gain',txrx_gain,'Ts',290.0);

Set Up the Transmitter System Objects

Create System Objects that make up the transmission part of the simulation: radar
platform, antenna, transmitter, and radiator.

8 Detection

8-14

sAntPlatform = phased.Platform(...

 'InitialPosition',[0; 0; 0],...

 'Velocity',[0; 0; 0]);

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[5e9 15e9]);

sTX = phased.Transmitter(...

 'Gain',txrx_gain,...

 'PeakPower',peak_power,...

 'InUseOutputPort',true);

sRad = phased.Radiator(...

 'Sensor',sIso,...

 'OperatingFrequency',fc);

Set Up the Target System Object

Create a target System Object corresponding to an actual reflecting target with a non-
zero target cross-section. Reflections from this target will simulate actual radar returns.
In order to compute false alarms, create a second target System Object with zero radar
cross section. Reflections from this target are zero except for noise.

sTgt{1} = phased.RadarTarget(...

 'MeanRCS',tgt_rcs,...

 'OperatingFrequency',fc);

sTgtPlatform{1} = phased.Platform(...

 'InitialPosition',[target_range; 0; 0]);

sTgt{2} = phased.RadarTarget(...

 'MeanRCS',0,...

 'OperatingFrequency',fc);

sTgtPlatform{2} = phased.Platform(...

 'InitialPosition',[target_range; 0; 0]);

Set Up Free-Space Propagation System Objects

Model the propagation environment from the radar to the targets and back.

sChan{1} = phased.FreeSpace(...

 'SampleRate',fs,...

 'TwoWayPropagation',true,...

 'OperatingFrequency',fc);

sChan{2} = phased.FreeSpace(...

 'SampleRate',fs,...

 'TwoWayPropagation',true,...

 'OperatingFrequency',fc);

 Monte-Carlo ROC Simulation

8-15

Set Up Receiver System Objects

Specified the noise by setting the NoiseMethod property to 'Noise temperature' and
the ReferenceTemperature property to 290 K.

sCollector = phased.Collector(...

 'Sensor',sIso,...

 'OperatingFrequency',fc);

sRecvr = phased.ReceiverPreamp(...

 'Gain',txrx_gain,...

 'NoiseMethod','Noise temperature',...

 'ReferenceTemperature',290.0,...

 'NoiseFigure',0,...

 'SampleRate',fs,...

 'EnableInputPort',true);

sRecvr.SeedSource = 'Property';

sRecvr.Seed = 2010;

Specify Fast-Time Grid

The fast-time grid is the set of time samples within one pulse repetition time interval.
Each sample corresponds to a range bin.

fast_time_grid = unigrid(0,1/fs,1/prf,'[)');

rangebins = c*fast_time_grid/2;

Create Transmitted Pulse from Waveform

Create the waveform to you want to transmit.

wavfrm = step(sWav);

Create the transmitted signal that includes transmitted antenna gains.

[sigtrans,tx_status] = step(sTX,wavfrm);

Create matched filter coefficients from the waveform System object. Then create the
matched filter System object™.

MFCoeff = getMatchedFilter(sWav);

matchingdelay = size(MFCoeff,1) - 1;

sMF = phased.MatchedFilter(...

 'Coefficients',MFCoeff,...

 'GainOutputPort',false);

8 Detection

8-16

Compute Target Range Bin

Compute the target range, and then compute the index into the range bin array.
Because the target and radar are stationary, use the same values of position and velocity
throughout the simulation loop. You can assume that the range bin index is constant for
the entire simulation.

ant_pos = sAntPlatform.InitialPosition;

ant_vel = sAntPlatform.Velocity;

tgt_pos = sTgtPlatform{1}.InitialPosition;

tgt_vel = sTgtPlatform{1}.Velocity;

[tgt_rng,tgt_ang] = rangeangle(tgt_pos,ant_pos);

rangeidx = val2ind(tgt_rng,rangebins(2)-rangebins(1),rangebins(1));

Loop Over Pulses

Create a signal processing loop. Each step is accomplished by invoking the step method
of the System Objects. The loop processes the pulses twice, once for the target-present
condition and once for target-absent condition.

1 Radiate the signal into space using phased.Radiator.
2 Propagate the signal to the target and back to the antenna using

phased.FreeSpace.
3 Reflect the signal from the target using phased.Target.
4 Receive the reflected signals at the antenna using phased.Collector.
5 Pass the received signal though the receive amplifier using

phased.ReceiverPreamp. This step also adds the random noise to the signal.
6 Match filter the amplified signal using phased.MatchedFilter.
7 Store the matched filter output at the target range bin index for further analysis.

rcv_pulses = zeros(length(sigtrans),Npulsebuffsize);

h1 = zeros(Npulse,1);

h0 = zeros(Npulse,1);

Nbuff = floor(Npulse/Npulsebuffsize);

Nrem = Npulse - Nbuff*Npulsebuffsize;

for n = 1:2 % H1 and H0 Hypothesis

 trsig = step(sRad,sigtrans,tgt_ang);

 trsig = step(sChan{n},trsig,...

 ant_pos,tgt_pos,...

 ant_vel,tgt_vel);

 rcvsig = step(sTgt{n},trsig);

 Monte-Carlo ROC Simulation

8-17

 rcvsig = step(sCollector,rcvsig,tgt_ang);

 for k = 1:Nbuff

 for m = 1:Npulsebuffsize

 rcv_pulses(:,m) = step(sRecvr,rcvsig,~(tx_status>0));

 end

 rcv_pulses = step(sMF,rcv_pulses);

 rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));

 if n == 1

 h1((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';

 else

 h0((1:Npulsebuffsize) + (k-1)*Npulsebuffsize) = rcv_pulses(rangeidx,:).';

 end

 end

 if (Nrem > 0)

 for m = 1:Nrem

 rcv_pulses(:,m) = step(sRecvr,rcvsig,~(tx_status>0));

 end

 rcv_pulses = step(sMF,rcv_pulses);

 rcv_pulses = buffer(rcv_pulses(matchingdelay+1:end),size(rcv_pulses,1));

 if n == 1

 h1((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';

 else

 h0((1:Nrem) + Nbuff*Npulsebuffsize) = rcv_pulses(rangeidx,1:Nrem).';

 end

 end

end

Create Histogram of Matched Filter Outputs

Compute histograms of the target-present and target-absent returns. Use 100 bins to
give a rough estimate of the spread of signal values. Set the range of histogram values
from the smallest signal to the largest signal.

h1a = abs(h1);

h0a = abs(h0);

thresh_low = min([h1a;h0a]);

thresh_hi = max([h1a;h0a]);

nbins = 100;

binedges = linspace(thresh_low,thresh_hi,nbins);

figure

histogram(h0a,binedges)

hold on

histogram(h1a,binedges)

hold off

8 Detection

8-18

title('Target-Absent Vs Target-Present Histograms')

legend('Target Absent','Target Present');

Compare Simulated and Theoretical Pd and Pfa

To compute Pd and Pfa, calculate the number of instances that a target-absent return
and a target-present return exceed a given threshold. This set of thresholds has a finer
granularity than the bins used to create the histogram in the previous simulation. Then,
normalize these counts by the number of pulses to get an estimate of the probabilities.
The vector sim_pfa is the simulated probability of false alarm as a function of the
threshold, thresh. The vector sim_pd is the simulated probability of detection, also
a function of the threshold. The receiver sets the threshold so that it can determine

 Monte-Carlo ROC Simulation

8-19

whether a target is present or absent. The histogram above suggests that the best
threshold is around 1.8.

nbins = 1000;

thresh_steps = linspace(thresh_low,thresh_hi,nbins);

sim_pd = zeros(1,nbins);

sim_pfa = zeros(1,nbins);

for k = 1:nbins

 thresh = thresh_steps(k);

 sim_pd(k) = sum(h1a >= thresh);

 sim_pfa(k) = sum(h0a >= thresh);

end

sim_pd = sim_pd/Npulse;

sim_pfa = sim_pfa/Npulse;

To plot the experimental ROC curve, you must invert the Pfa curve so that you can plot
Pd against Pfa. You can invert the Pfa curve only when you can express Pfa as a strictly
monotonic decreasing function of thresh. To express Pfa this way, find all array indices
where the Pfa is the constant over neighboring indices. Then, remove these values from
the Pd and Pfa arrays.

pfa_diff = diff(sim_pfa);

idx = (pfa_diff == 0);

sim_pfa(idx) = [];

sim_pd(idx) = [];

Limit the smallest Pfa to .

minpfa = 1e-6;

N = sum(sim_pfa >= minpfa);

sim_pfa = fliplr(sim_pfa(1:N)).';

sim_pd = fliplr(sim_pd(1:N)).';

Compute the theoretical Pfa and Pd values from the smallest Pfa to 1. Then plot the
theoretical Pfa curve.

[theor_pd,theor_pfa] = rocsnr(snr_min,'SignalType',...

 'NonfluctuatingNoncoherent',...

 'MinPfa',minpfa,'NumPoints',N,'NumPulses',1);

semilogx(theor_pfa,theor_pd)

hold on

semilogx(sim_pfa,sim_pd,'r.')

title('Simulated and Theoretical ROC Curves')

xlabel('Pfa')

8 Detection

8-20

ylabel('Pd')

grid on

legend('Theoretical','Simulated','Location','SE');

Improve Simulation Using One Million Pulses

In the preceding simulation, Pd values at low Pfa do not fall along a smooth curve and
do not even extend down to the specified operating regime. The reason for this is that at
very low Pfa levels, very few, if any, samples exceed the threshold. To generate curves at
low Pfa, you must use a number of samples on the order of the inverse of Pfa. This type
of simulation takes a long time. The following curve uses one million pulses instead of
45,000. To run this simulation, repeat the example, but set Npulse to 1000000.

 Monte-Carlo ROC Simulation

8-21

8 Detection

8-22

Matched Filtering

In this section...

“Reasons for Using Matched Filtering” on page 8-22
“Support for Matched Filtering” on page 8-22
“Matched Filtering of Linear FM Waveform” on page 8-22
“Matched Filtering to Improve SNR for Target Detection” on page 8-24

Reasons for Using Matched Filtering

You can see from the results in “Receiver Operating Characteristic (ROC) Curves”
on page 8-7 that the probability of detection increases with increasing SNR. For a
deterministic signal in white Gaussian noise, you can maximize the SNR at the receiver
by using a filter matched to the signal. The matched filter is a time-reversed and
conjugated version of the signal. The matched filter is shifted to be causal.

Support for Matched Filtering

Use phased.MatchedFilter to implement a matched filter.

When you use phased.MatchedFilter, you can customize characteristics of the
matched filter such as the matched filter coefficients and window for spectrum weighting.
If you apply spectrum weighting, you can specify the coverage region and coefficient
sample rate; Taylor, Chebyshev, and Kaiser windows have additional properties you can
specify.

Matched Filtering of Linear FM Waveform

This example shows how to compare the results of matched filtering with and without
spectrum weighting. Spectrum weighting is often used with linear FM waveforms to
reduce the sidelobes in the time domain.

Create a linear FM waveform with a duration of 0.1 milliseconds, a sweep bandwidth of
100 kHz, and a pulse repetition frequency of 5 kHz. Add noise to the linear FM pulse and
filter the noisy signal using a matched filter. This example applies a matched filter with
and without spectrum weighting.

% Specify the waveform.

hwav = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3,...

 Matched Filtering

8-23

 'SampleRate',1e6,'OutputFormat','Pulses','NumPulses',1,...

 'SweepBandwidth',1e5);

w = getMatchedFilter(hwav);

% Create a matched filter with no spectrum weighting, and a

% matched filter that uses a Taylor window for spectrum

% weighting.

hmf = phased.MatchedFilter('Coefficients',w);

hmf_taylor = phased.MatchedFilter('Coefficients',w,...

 'SpectrumWindow','Taylor');

% Create the signal and add noise.

sig = step(hwav);

rng(17)

x = sig+0.5*(randn(length(sig),1)+1j*randn(length(sig),1));

% Filter the noisy signal separately with each of the filters.

y = step(hmf,x);

y_taylor = step(hmf_taylor,x);

% Plot the real parts of the waveform and noisy signal.

t = linspace(0,numel(sig)/hwav.SampleRate,...

 hwav.SampleRate/hwav.PRF);

subplot(2,1,1);

plot(t,real(sig)); title('Input Signal');

xlim([0 max(t)]); grid on

ylabel('Amplitude');

subplot(2,1,2);

plot(t,real(x)); title('Input Signal + Noise');

xlim([0 max(t)]); grid on

xlabel('Seconds'); ylabel('Amplitude');

% Plot the magnitudes of the two matched filter outputs.

figure;

plot(t,abs(y),'b--');

title('Matched Filter Output');

xlim([0 max(t)]); grid on

hold on;

plot(t,abs(y_taylor),'r-');

ylabel('Magnitude'); xlabel('Seconds');

legend('No Spectrum Weighting','Taylor Window');

hold off;

8 Detection

8-24

Matched Filtering to Improve SNR for Target Detection

This example shows how to improve the SNR by performing matched filtering.

Place an isotropic antenna element at the global origin [0;0;0]. Then, place a
target with a nonfluctuating RCS of 1 square meter at [5000;5000;10], which is
approximately 7 km from the transmitter. Set the operating (carrier) frequency to
10 GHz. To simulate a monostatic radar, set the InUseOutputPort property on the
transmitter to true. Calculate the range and angle from the transmitter to the target.

 Matched Filtering

8-25

hsensor = phased.IsotropicAntennaElement(...

 'FrequencyRange',[5e9 15e9]);

htx = phased.Transmitter('Gain',20,'InUseOutputPort',true);

fc = 10e9;

htgt = phased.RadarTarget('Model','Nonfluctuating',...

 'MeanRCS',1,'OperatingFrequency',fc);

txloc = [0;0;0];

tgtloc = [5000;5000;10];

htxloc = phased.Platform('InitialPosition',txloc);

htgtloc = phased.Platform('InitialPosition',tgtloc);

[tgtrng,tgtang] = rangeangle(htgtloc.InitialPosition,...

 htxloc.InitialPosition);

Create a rectangular pulse waveform 25 μs in duration with a PRF of 10 kHz. Use a
single pulse for this example. Determine the maximum unambiguous range for the given
PRF. Use the radareqpow function to determine the peak power required to detect a
target. This target has an RCS of 1 square meter at the maximum unambiguous range
for the transmitter operating frequency and gain. The SNR is based on a desired false-
alarm rate of 1e-6 for a noncoherent detector.

hwav = phased.RectangularWaveform('PulseWidth',25e-6,...

 'OutputFormat','Pulses','PRF',1e4,'NumPulses',1);

c = physconst('LightSpeed');

maxrange = c/(2*hwav.PRF);

SNR = npwgnthresh(1e-6,1,'noncoherent');

Pt = radareqpow(c/fc,maxrange,SNR,...

 hwav.PulseWidth,'RCS',htgt.MeanRCS,'Gain',htx.Gain);

Set the peak transmit power to the output value from radareqpow.

htx.PeakPower = Pt;

Create radiator and collector objects that operate at 10 GHz. Create a free space path
for the propagation of the pulse to and from the target. Then, create a receiver and a
matched filter for the rectangular waveform.

hrad = phased.Radiator('PropagationSpeed',c,...

 'OperatingFrequency',fc,'Sensor',hsensor);

hspace = phased.FreeSpace('PropagationSpeed',c,...

 'OperatingFrequency',fc,'TwoWayPropagation',false);

hcol = phased.Collector('PropagationSpeed',c,...

 'OperatingFrequency',fc,'Sensor',hsensor);

hrec = phased.ReceiverPreamp('NoiseFigure',0,...

 'EnableInputPort',true,'SeedSource','Property','Seed',2e3);

8 Detection

8-26

hmf = phased.MatchedFilter(...

 'Coefficients',getMatchedFilter(hwav),...

 'GainOutputPort',true);

After you create all the objects that define your model, you can propagate the pulse to
and from the target. Collect the echo at the receiver, and implement the matched filter to
improve the SNR.

% Generate waveform

wf = step(hwav);

% Transmit waveform

[wf,txstatus] = step(htx,wf);

% Radiate pulse toward the target

wf = step(hrad,wf,tgtang);

% Propagate pulse toward the target

wf = step(hspace,wf,txloc,tgtloc,[0;0;0],[0;0;0]);

% Reflect it off the target

wf = step(htgt,wf);

% Propagate the pulse back to transmitter

wf = step(hspace,wf,tgtloc,txloc,[0;0;0],[0;0;0]);

% Collect the echo

wf = step(hcol,wf,tgtang);

% Receive target echo

rx_puls = step(hrec,wf,~txstatus);

[mf_puls,mfgain] = step(hmf,rx_puls);

% Get group delay of matched filter

Gd = length(hmf.Coefficients)-1;

% The group delay is constant

% Shift the matched filter output

mf_puls=[mf_puls(Gd+1:end); mf_puls(1:Gd)];

subplot(2,1,1);

t = unigrid(0,1e-6,1e-4,'[)');

rangegates = c.*t;

rangegates = rangegates/2;

plot(rangegates,abs(rx_puls)); title('Received Pulse');

ylabel('Amplitude'); hold on;

plot([tgtrng, tgtrng], [0 max(abs(rx_puls))],'r');

subplot(2,1,2)

plot(rangegates,abs(mf_puls)); title('With Matched Filtering');

xlabel('Meters'); ylabel('Amplitude'); hold on;

plot([tgtrng, tgtrng], [0 max(abs(mf_puls))],'r');

 Matched Filtering

8-27

8 Detection

8-28

Stretch Processing

In this section...

“Reasons for Using Stretch Processing” on page 8-28
“Support for Stretch Processing” on page 8-28
“Stretch Processing Procedure” on page 8-28

Reasons for Using Stretch Processing

The linear FM waveform is popular in radar systems because its large time-bandwidth
product can provide good range resolution. However, the large bandwidth of this
waveform makes digital matched filtering difficult because it requires expensive, high-
quality analog-to-digital converters. Stretch processing, also known as deramping, or
dechirping, is an alternative to matched filtering. Stretch processing provides pulse
compression by looking for the return within a predefined range interval of interest.
Stretch processing typically occurs in the analog domain. Unlike matched filtering,
stretch processing reduces the bandwidth requirement of subsequent processing.

Support for Stretch Processing

The phased.StretchProcessor System object implements stretch processing. You can use
this object as part of a simulation that uses phased.LinearFMWaveform or directly
with your own data.

Stretch Processing Procedure

The typical procedure for stretch processing is as follows:

1 Choose a range interval of interest, centered on a reference range. Stretch processing
focuses on this interval instead of the entire range span that the pulse can cover.

2 Define and configure a stretch processor object. The configuration includes the
reference range, length of the range interval of interest, characteristics of the linear
FM waveform, and signal propagation speed.

• If you are using a phased.LinearFMWaveform object to implement the
linear FM waveform, use the getStretchProcessor method to define and
automatically configure a stretch processor object.

 Stretch Processing

8-29

• Otherwise, create a phased.StretchProcessor object directly, and set its
properties as needed.

3 Perform stretch processing by calling the step method on your stretch processor
object. You provide your received signal as an input argument. The step method
generates a reference signal and correlates it with your received signal.

4 Compute a periodogram of the output from step, and identify the peak frequencies.
You can use the following features to help you perform this step:

• periodogram

• psd

• findpeaks

5 Convert each peak frequency to the corresponding range value, using the
stretchfreq2rng function.

See Also
phased.StretchProcessor | phased.LinearFMWaveform | findpeaks | periodogram |
stretchfreq2rng

Related Examples
• Range Estimation Using Stretch Processing

../examples/range-estimation-using-stretch-processing.html

8 Detection

8-30

FMCW Range Estimation

The purpose of FMCW range estimation is to estimate the range of a target. For example,
a radar for collision avoidance in an automobile needs to estimate the distance to the
nearest obstacle. FMCW range estimation algorithms can vary in the details, but the
typical high-level procedure is as follows:

1 Dechirp — Dechirp the received signal by mixing it with the transmitted signal. If
you use the dechirp function, the transmitted signal is the reference signal.

2 Find beat frequency — From the dechirped signal, extract the beat frequency
or pair of beat frequencies. If the FMCW signal has a sawtooth shape (up-sweep or
down-sweep sawtooth shape), you extract one beat frequency. If the FMCW signal
has a triangular sweep, you extract up-sweep and down-sweep beat frequencies.

Extracting beat frequencies can use a variety of algorithms. For example, you can
use the following features to help you perform this step:

• pwelch or periodogram
• psd

• findpeaks

• rootmusic

• phased.CFARDetector

3 Compute range — Use the beat frequency or frequencies to compute the
corresponding range value. The beat2range function can perform this computation.

While developing your algorithm, you might also perform these auxiliary tasks:

• Visualize targets in the range-Doppler domain, using the
phased.RangeDopplerResponse System object.

• Determine whether you need to compensate for range-Doppler coupling. Such
coupling can occur if the target is moving relative to the radar. You can use the
rdcoupling function to compute the range offset due to range-Doppler coupling. If
the range offset is not negligible, common compensation techniques include:

• Subtracting the range offset from your initial range estimate
• Having the FMCW signal use a triangle sweep instead of an up sweep or down

sweep

 FMCW Range Estimation

8-31

• Explore the relationships among your system’s range requirements and parameters of
the FMCW waveform. You can use these functions:

• range2time

• time2range

• range2bw

See Also
phased.FMCWWaveform | phased.RangeDopplerResponse | beat2range | dechirp
| findpeaks | periodogram | pwelch | range2beat | range2bw | range2time |
rdcoupling | rootmusic | time2range

Related Examples
• Automotive Adaptive Cruise Control Using FMCW Technology

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

8 Detection

8-32

Range-Doppler Response

In this section...

“Benefits of Producing Range-Doppler Response” on page 8-32
“Support for Range-Doppler Processing” on page 8-32
“Range-Speed Response Pattern of Target” on page 8-34

Benefits of Producing Range-Doppler Response

Visualizing a signal in the range-Doppler domain can help you intuitively understand
connections among targets. From a range-Doppler map, you can:

• See how far away the targets are and how quickly they are approaching or receding.
• Distinguish among targets moving at various speeds at various ranges, in particular:

• If a transmitter platform is stationary, a range-Doppler map shows a response
from stationary targets at zero Doppler.

• For targets that are moving relative to the transmitter platform, the range-
Doppler map shows a response at nonzero Doppler values.

You can also use the range-Doppler response in nonvisual ways. For example, you can
perform peak detection in the range-Doppler domain and use the information to resolve
the range-Doppler coupling of an FMCW radar system.

Support for Range-Doppler Processing

You can use the phased.RangeDopplerResponse object to compute and visualize the
range-Doppler response of input data. This object performs range processing in fast
time, followed by Doppler processing in slow time. The object configuration and syntax
typically depend on the kind of radar system.

Pulsed Radar Systems

This procedure is used typically to produce a range-Doppler response for a pulsed
radar system. (In the special case of linear FM pulses, the procedure in “FMCW Radar
Systems” on page 8-33 is an alternative option.)

1 Create a phased.RangeDopplerResponse object, setting the RangeMethod
property to 'Matched Filter'.

 Range-Doppler Response

8-33

2 Customize these characteristics, or accept default values for any of them:

• Signal propagation speed
• Sample rate
• Length of the FFT for Doppler processing
• Characteristics of the window for Doppler weighting, if any
• Doppler domain output preference in terms of radial speed or Doppler shift

frequency. (If you select radial speed, also specify the signal carrier frequency.)
3 Organize your data, x, into a matrix. The columns in this matrix correspond to

separate, consecutive pulses.
4 Use plotResponse to plot the range-Doppler response or step to obtain data

representing the range-Doppler response. Include x and matched filter coefficients in
your syntax when you call plotResponse or step.

For examples, see the step reference page or “Range-Speed Response Pattern of Target”
on page 8-34.

FMCW Radar Systems

This procedure is used typically to produce a range-Doppler response for an FMCW radar
system. You can also use this procedure for a system that uses linear FM pulsed signals.
In the case of pulsed signals, you typically use stretch processing to dechirp the signal.

1 Create a phased.RangeDopplerResponse object, setting the RangeMethod
property to 'Dechirp'.

2 Customize these characteristics, or accept default values for any of them:

• Signal propagation speed
• Sample rate
• FM sweep slope
• Whether the processor should dechirp or decimate your signal
• Length of the FFT for range processing. The algorithm performs an FFT to

translate the dechirped data into the beat frequency domain, which provides
range information.

• Characteristics of the window for range weighting, if any
• Length of the FFT for Doppler processing
• Characteristics of the window for Doppler weighting, if any

8 Detection

8-34

• Doppler domain output preference in terms of radial speed or Doppler shift
frequency. (If you select radial speed, also specify the signal carrier frequency.)

3 Organize your data, x, into a matrix in which the columns correspond to sweeps or
pulses that are separate and consecutive.

In the case of an FMCW waveform with a triangle sweep, the sweeps alternate
between positive and negative slopes. However, phased.RangeDopplerResponse
is designed to process consecutive sweeps of the same slope. To apply
phased.RangeDopplerResponse for a triangle-sweep system, use one of the
following approaches:

• Specify a positive SweepSlope property value, with x corresponding to upsweeps
only. The true values of Doppler or speed are half of what step returns or
plotResponse plots.

• Specify a negative SweepSlope property value, with x corresponding to
downsweeps only. The true values of Doppler or speed are half of what step
returns or plotResponse plots.

4 Use plotResponse to plot the range-Doppler response or step to obtain data
representing the range-Doppler response. Include x in the syntax when you call
plotResponse or step. If your data is not already dechirped, also include a
reference signal in the syntax.

For an example, see the plotResponse reference page.

Range-Speed Response Pattern of Target

This example shows how to visualize the speed and range of a target in a pulsed radar
system that uses a rectangular waveform.

Place an isotropic antenna element at the global origin (0,0,0). Then, place a target with
a nonfluctuating RCS of 1 square meter at (5000,5000,10), which is approximately 7
km from the transmitter. Set the operating (carrier) frequency to 10 GHz. To simulate
a monostatic radar, set the InUseOutputPort property on the transmitter to true.
Calculate the range and angle from the transmitter to the target.

sIsoAnt = phased.IsotropicAntennaElement(...

 'FrequencyRange',[5e9 15e9]);

sTX = phased.Transmitter('Gain',20,'InUseOutputPort',true);

fc = 10e9;

sTgt = phased.RadarTarget('Model','Nonfluctuating',...

 Range-Doppler Response

8-35

 'MeanRCS',1,'OperatingFrequency',fc);

txloc = [0;0;0];

tgtloc = [5000;5000;10];

sTXplatform = phased.Platform('InitialPosition',txloc);

sTgtplatform = phased.Platform('InitialPosition',tgtloc);

[tgtrng,tgtang] = rangeangle(sTgtplatform.InitialPosition,...

 sTXplatform.InitialPosition);

Create a rectangular pulse waveform 2μs in duration with a PRF of 10 kHz. Determine
the maximum unambiguous range for the given PRF. Use the radareqpow function to
determine the peak power required to detect a target. This target has an RCS of 1 square
meter at the maximum unambiguous range for the transmitter operating frequency and
gain. The SNR is based on a desired false-alarm rate of for a noncoherent detector.

sWav = phased.RectangularWaveform('PulseWidth',2e-6,...

 'OutputFormat','Pulses','PRF',1e4,'NumPulses',1);

c = physconst('LightSpeed');

maxrange = c/(2*sWav.PRF);

SNR = npwgnthresh(1e-6,1,'noncoherent');

Pt = radareqpow(c/fc,maxrange,SNR,...

 sWav.PulseWidth,'RCS',sTgt.MeanRCS,'Gain',sTX.Gain);

Set the peak transmit power to the output value from radareqpow.

sTX.PeakPower = Pt;

Create radiator and collector objects that operate at 10 GHz. Create a free space path for
the propagation of the pulse to and from the target. Then, create a receiver.

sRad = phased.Radiator(...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc,'Sensor',sIsoAnt);

sFS = phased.FreeSpace(...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc,'TwoWayPropagation',false);

sColl = phased.Collector(...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc,'Sensor',sIsoAnt);

sRcvr = phased.ReceiverPreamp('NoiseFigure',0,...

 'EnableInputPort',true,'SeedSource','Property','Seed',2e3);

Propagate 25 pulses to and from the target. Collect the echoes at the receiver, and store
them in a 25-column matrix named rx_puls.

numPulses = 25;

8 Detection

8-36

rx_puls = zeros(100,numPulses);

Simulation loop

for n = 1:numPulses

Generate waveform

 wf = step(sWav);

Transmit waveform

 [wf,txstatus] = step(sTX,wf);

Radiate pulse toward the target

 wf = step(sRad,wf,tgtang);

Propagate pulse toward the target

 wf = step(sFS,wf,txloc,tgtloc,[0;0;0],[0;0;0]);

Reflect it off the target

 wf = step(sTgt,wf);

Propagate the pulse back to transmitter

 wf = step(sFS,wf,tgtloc,txloc,[0;0;0],[0;0;0]);

Collect the echo

 wf = step(sColl,wf,tgtang);

Receive the target echo

 rx_puls(:,n) = step(sRcvr,wf,~txstatus);

end

Create a range-Doppler response object that uses the matched filter approach. Configure
this object to show radial speed rather than Doppler frequency. Use plotResponse to
plot the range versus speed.

sRangeDop = phased.RangeDopplerResponse(...

 'RangeMethod','Matched Filter',...

 Range-Doppler Response

8-37

 'PropagationSpeed',c,...

 'DopplerOutput','Speed','OperatingFrequency',fc);

plotResponse(sRangeDop,rx_puls,getMatchedFilter(sWav))

The plot shows the stationary target at a range of approximately 7000 m.

See Also
phased.RangeDopplerResponse

Related Examples
• Automotive Adaptive Cruise Control Using FMCW Technology

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

8 Detection

8-38

Constant False-Alarm Rate (CFAR) Detectors

In this section...

“Reasons for Using CFAR Detectors” on page 8-38
“Cell-Averaging CFAR Detector” on page 8-39
“Testing CFAR Detector Adaption to Noisy Input Data” on page 8-41
“Extensions of Cell-Averaging CFAR Detector” on page 8-42
“Detection Probability for CFAR Detector” on page 8-42

Reasons for Using CFAR Detectors

In the Neyman-Pearson framework, the probability of detection is maximized subject
to the constraint that the false-alarm probability does not exceed a specified level. The
false-alarm probability depends on the noise variance. Therefore, to calculate the false-
alarm probability, you must first estimate the noise variance. If the noise variance
changes, you must adjust the threshold to maintain a constant false-alarm rate. Constant
false-alarm rate detectors implement adaptive procedures that enable you to update the
threshold level of your test when the power of the interference changes.

To motivate the need for an adaptive procedure, assume a simple binary hypothesis test
where you must decide between these hypotheses for a single sample:

H x w w N

H x w

0

1

0 0 0 0 1

0 4 0

: [] [] []~ (,)

: [] []

=

= +

Set the false-alarm rate to 0.001 and determine the threshold.

T = npwgnthresh(1e-3,1,'real');

threshold = sqrt(db2pow(T))

Check that this threshold yields the desired false-alarm rate probability, and compute
the probability of detection.

% check false-alarm probability

Pfa = 0.5*erfc(threshold/sqrt(2))

% compute probability of detection

 Constant False-Alarm Rate (CFAR) Detectors

8-39

Pd = 0.5*erfc((threshold-4)/sqrt(2))

Next, assume that the noise power increases by 6.02 dB, doubling the noise variance. If
your detector does not adapt to this increase in variance by determining a new threshold,
your false-alarm rate increases significantly.

Pfa = 0.5*erfc(threshold/2)

The following figure demonstrates the effect of increasing the noise variance on the false-
alarm probability for a fixed threshold.

noisevar = 1:0.1:10;

Noisepower = 10*log10(noisevar);

Pfa = 0.5*erfc(threshold./sqrt(2*noisevar));

semilogy(Noisepower,Pfa./1e-3);

grid on; title('Increase in P_{FA} due to Noise Variance');

ylabel('Increase in P_{FA} (Orders of Magnitude)');

xlabel('Noise Power Increase (dB)');

Cell-Averaging CFAR Detector

The cell-averaging CFAR detector estimates the noise variance for the range cell of
interest, or cell under test, by analyzing data from neighboring range cells designated as
training cells. The noise characteristics in the training cells are assumed to be identical
to the noise characteristics in the cell under test (CUT).

8 Detection

8-40

This assumption is key in justifying the use of the training cells to estimate the noise
variance in the CUT. Additionally, the cell-averaging CFAR detector assumes that the
training cells do not contain any signals from targets. Thus, the data in the training cells
are assumed to consist of noise only.

To make these assumptions realistic:

• It is preferable to have some buffer, or guard cells, between the CUT and the training
cells. The buffer provided by the guard cells guards against signal leaking into the
training cells and adversely affecting the estimation of the noise variance.

• The training cells should not represent range cells too distant in range from the CUT,
as the following figure illustrates.

The optimum estimator for the noise variance depends on distributional assumptions and
the type of detector. Assume the following:

1 You are using a square-law detector.
2 You have a Gaussian, complex-valued, random variable (RV) with independent real

and imaginary parts.
3 The real and imaginary parts each have mean zero and variance equal to σ2/2.

Note: If you denote this RV by Z=U+jV, the squared magnitude |Z|2 follows an
exponential distribution with mean σ2.

If the samples in training cells are the squared magnitudes of such complex Gaussian
RVs, you can use the sample mean as an estimator of the noise variance.

 Constant False-Alarm Rate (CFAR) Detectors

8-41

To implement cell-averaging CFAR detection, use phased.CFARDetector. You can
customize characteristics of the detector such as the numbers of training cells and guard
cells, and the probability of false alarm.

Testing CFAR Detector Adaption to Noisy Input Data

This example shows how to create a CFAR detector and test its ability to adapt to the
statistics of input data. The test uses noise-only trials. By using the default square-law
detector, you can determine how close the empirical false-alarm rate is to the desired
false-alarm probability.

Create a CFAR detector object with two guard cells, 20 training cells, and a false-alarm
probability of 0.001. By default, this object assumes a square-law detector with no pulse
integration.

hdetector = phased.CFARDetector('NumGuardCells',2,...

 'NumTrainingCells',20,'ProbabilityFalseAlarm',1e-3);

There are 10 training cells and 1 guard cell on each side of the cell under test (CUT). Set
the CUT index to 12.

CUTidx = 12;

Seed the random number generator for a reproducible set of input data.

rng(1000);

Set the noise variance to 0.25. This value corresponds to an approximate –6 dB SNR.
Generate a 23-by-10000 matrix of complex-valued, white Gaussian RVs with the specified
variance. Each row of the matrix represents 10,000 Monte Carlo trials for a single cell.

Ntrials = 1e4;

variance = 0.25;

Ncells = 23;

inputdata = sqrt(variance/2)*(randn(Ncells,Ntrials)+...

 1j*randn(Ncells,Ntrials));

Because the example implements a square-law detector, take the squared magnitudes of
the elements in the data matrix.

Z = abs(inputdata).^2;

Provide the output of the square-law operator and the index of the cell under test to
CFAR detector's step method.

8 Detection

8-42

Z_detect = step(hdetector,Z,CUTidx);

The output is a logical vector Z_detect with 10,000 elements. Sum the elements in
Z_detect and divide by the total number of trials to obtain the empirical false-alarm
rate.

Pfa = sum(Z_detect)/Ntrials

The empirical false-alarm rate is 0.0013, which corresponds closely to the desired false-
alarm rate of 0.001.

Extensions of Cell-Averaging CFAR Detector

The cell-averaging algorithm for a CFAR detector works well in many situations, but
not all. For example, when targets are closely located, cell averaging can cause a strong
target to mask a weak target nearby. The phased.CFARDetector System object supports
the following CFAR detection algorithms.

Algorithm Typical Usage

Cell-averaging CFAR Most situations
Greatest-of cell-averaging CFAR When it is important to avoid false alarms at the

edge of clutter
Smallest-of cell-averaging CFAR When targets are closely located
Order statistic CFAR Compromise between greatest-of and smallest-of

cell averaging

Detection Probability for CFAR Detector

This example shows how to compare the probability of detection resulting from two
CFAR algorithms. In this scenario, the order statistic algorithm detects a target that the
cell-averaging algorithm does not.

Create a CFAR detector that uses the cell-averaging CFAR algorithm.

Ntraining = 10;

Nguard = 2;

Pfa_goal = 0.01;

sCFAR = phased.CFARDetector('Method','CA',...

 'NumTrainingCells',Ntraining,'NumGuardCells',Nguard,...

 Constant False-Alarm Rate (CFAR) Detectors

8-43

 'ProbabilityFalseAlarm',Pfa_goal);

The detector has 2 guard cells, 10 training cells, and a false-alarm probability of 0.01.
This object assumes a square-law detector with no pulse integration.

Generate a vector of input data based on a complex-valued white Gaussian random
variable.

Ncells = 23;

Ntrials = 100000;

inputdata = 1/sqrt(2)*(randn(Ncells,Ntrials) + ...

 1i*randn(Ncells,Ntrials));

In the input data, replace rows 8 and 12 to simulate two targets for the CFAR detector to
detect.

inputdata(8,:) = 3*exp(1i*2*pi*rand);

inputdata(12,:) = 9*exp(1i*2*pi*rand);

Because the example implements a square-law detector, take the squared magnitudes of
the elements in the input data vector.

Z = abs(inputdata).^2;

Perform the detection on rows 8 through 12.

Z_detect = step(sCFAR,Z,8:12);

The Z_detect matrix has five rows. The first and last rows correspond to the simulated
targets. The three middle rows correspond to noise.

Compute the probability of detection of the two targets. Also, estimate the probability of
false alarm using the noise-only rows.

Pd_1 = sum(Z_detect(1,:))/Ntrials

Pd_2 = sum(Z_detect(end,:))/Ntrials

Pfa = max(sum(Z_detect(2:end-1,:),2)/Ntrials)

Pd_1 =

 0

Pd_2 =

8 Detection

8-44

 1

Pfa =

 6.0000e-05

The 0 value of Pd_1 indicates that this detector does not detect the first target.

Change the CFAR detector so it uses the order statistic CFAR algorithm with a rank of 5.

release(sCFAR);

sCFAR.Method = 'OS';

sCFAR.Rank = 5;

Repeat the detection and probability computations.

Z_detect = step(sCFAR,Z,8:12);

Pd_1 = sum(Z_detect(1,:))/Ntrials

Pd_2 = sum(Z_detect(end,:))/Ntrials

Pfa = max(sum(Z_detect(2:end-1,:),2)/Ntrials)

Pd_1 =

 0.5820

Pd_2 =

 1

Pfa =

 0.0066

Using the order statistic algorithm instead of the cell-averaging algorithm, the detector
detects the first target in about 58% of the trials.

 Measure Intensity Levels Using the Intensity Scope

8-45

Measure Intensity Levels Using the Intensity Scope

This tutorial shows you how to measure the intensity of signals using the UI of the
intensity scope. First, create an intensity scope. You can start with the example below,
“RTI and DTI Displays in Full Radar Simulation” on page 8-46, or you can create
your own scope. When this example launches, range-time-intensity (RTI) and Doppler-
time-intensity (DTI) display windows open. This tutorial focuses on the RTI display so
you can close the DTI window once the processing loop completes. This figure shows the
RTI display after processing has completed. The display shows three tracks.

To examine the data, click the Cursor Measurement button in the Toolbar. You see
two cursors, each of which is represented by pairs of cross-hairs. To distinguish cursors,
one pair consists of solid lines and the second pair consists of dashed lines and are tagged
with a 1 or a 2.

8 Detection

8-46

Cursor 1 has solid cross-hairs and overlays the intersection of two signal lines. Cursor 2
has dashed cross-hairs and overlays a signal-free region. The Cursor Measurements
pane shows the coordinates of the cursors in time and range (labelled X) and the
intensities at these positions. Cursor 1 is located at a range of 2775 meters and a time
of 3.6 seconds. The signal intensity at this point is 1.989e-6 watts. Cursor 2 is located
at a range of 3725 meters and a time of 2.9 seconds. The signal intensity at this point
is 3.327e-7 watts. You can move the cursors to any positions of interest and obtain the
intensity values.

RTI and DTI Displays in Full Radar Simulation

Use the phased.IntensityScope System object™ to display the detection output of
a complete radar system simulation. The radar scenario contains a stationary single-
element monostatic radar and three moving targets.

Set Radar Operating Parameters

Set the probability of detection, probability of false alarm, maximum range, range
resolution, operating frequency, transmitter gain, and target radar cross-section.

 Measure Intensity Levels Using the Intensity Scope

8-47

pd = 0.9;

pfa = 1e-6;

max_range = 5000;

range_res = 50;

fc = 10e9;

tx_gain = 20;

tgt_rcs = 1;

Choose the signal propagation speed to be the speed of light, and compute the signal
wavelength corresponding to the operating frequency.

c = physconst('LightSpeed');

lambda = c/fc;

Compute the pulse bandwith from the range resolution. Set the sampling rate, fs, to
twice the pulse bandwidth. The noise bandwidth is also set to the pulse bandwidth. The
radar integrates a number of pulses set by num_pulse_int. The duration of each pulse
is the inverse of the pulse bandwidth.

pulse_bw = c/(2*range_res);

pulse_length = 1/pulse_bw;

fs = 2*pulse_bw;

noise_bw = pulse_bw;

num_pulse_int = 10;

Set the pulse repetition frequency to match the maximum range of the radar.

prf = c/(2*max_range);

Compute Transmit Power

Use the Albersheim equation to compute the SNR required to meet the desired
probability of detection and probability of false alarm. Then, use the radar equation to
compute the power needed to achieve the required SNR.

snr_min = albersheim(pd, pfa, num_pulse_int);

peak_power = radareqpow(lambda,max_range,snr_min,pulse_length,...

 'RCS',tgt_rcs,'Gain',tx_gain);

Create System Objects for the Model

Choose a rectangular waveform.

sWav = phased.RectangularWaveform('PulseWidth',pulse_length,...

8 Detection

8-48

 'PRF',prf,'SampleRate',fs);

Set the receiver amplifier characteristics.

sRcvPreamp = phased.ReceiverPreamp('Gain',20,'NoiseFigure',0,...

 'SampleRate',fs,'EnableInputPort',true,'SeedSource','Property',...

 'Seed',2007);

sTransmitter = phased.Transmitter('Gain',tx_gain,'PeakPower',peak_power,...

 'InUseOutputPort',true);

Specify the radar antenna as a single isotropic antenna.

sIsoAnt = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);

Set up a monostatic radar platform.

sRadarPlatform = phased.Platform('InitialPosition',[0; 0; 0],...

 'Velocity',[0; 0; 0]);

Set up the three target platforms using a single System object.

sTargetPlatforms = phased.Platform(...

 'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0; 0 0 0], ...

 'Velocity',[150 -150 0; 0 0 0; 0 0 0]);

Create the radiator and collector System objects.

sRadiator = phased.Radiator('Sensor',sIsoAnt,'OperatingFrequency',fc);

sCollector = phased.Collector('Sensor',sIsoAnt,'OperatingFrequency',fc);

Set up the three target RCS properties.

sTargets = phased.RadarTarget('MeanRCS',[1.6 2.2 1.05],'OperatingFrequency',fc);

Create System object to model two-way freespace propagation.

sChannels= phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,...

 'OperatingFrequency',fc);

Define a matched filter.

MFcoef = getMatchedFilter(sWav);

sMF = phased.MatchedFilter('Coefficients',MFcoef,'GainOutputPort',true);

 Measure Intensity Levels Using the Intensity Scope

8-49

Create Range and Doppler Bins

Set up the fast-time grid. Fast time is the sampling time of the echoed pulse relative to
the pulse transmission time. The range bins are the ranges corresponding to each bin of
the fast time grid.

fast_time = unigrid(0,1/fs,1/prf,'[)');

range_bins = c*fast_time/2;

To compensate for range loss, create a time varying gain System Object™.

sTVG = phased.TimeVaryingGain('RangeLoss',2*fspl(range_bins,lambda),...

 'ReferenceLoss',2*fspl(max_range,lambda));

Set up Doppler bins. Doppler bins are determined by the pulse repetition frequency.
Create an FFT System object for Doppler processing.

DopplerFFTbins = 32;

DopplerRes = prf/DopplerFFTbins;

dopplerFFT = dsp.FFT('FFTLengthSource','Property',...

 'FFTLength',DopplerFFTbins);

Create Data Cube

Set up a reduced data cube. Normally, a data cube has fast-time and slow-time
dimensions and the number of sensors. Because data cube has only one sensor, it is two-
dimensional.

rx_pulses = zeros(numel(fast_time),num_pulse_int);

Create IntensityScope System Objects

Create two IntensityScope System objects, one for Doppler-time-intensity and the other
for range-time-intensity.

DTIscope = phased.IntensityScope('Name','Doppler-Time Display',...

 'XLabel','Velocity (m/sec)', ...

 'XResolution',dop2speed(DopplerRes,c/fc)/2, ...

 'XOffset',dop2speed(-prf/2,c/fc)/2,...

 'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','dB');

RTIscope = phased.IntensityScope('Name','Range-Time Display',...

 'XLabel','Range (m)', ...

 'XResolution',c/(2*fs), ...

8 Detection

8-50

 'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','dB');

Run the Simulation Loop Over Multiple Radar Transmissions

Transmit 2000 pulses. Coherently process groups of 10 pulses at a time.

For each pulse:

1 Update the radar position and velocity sRadarPlatform
2 Update the target positions and velocities sTargetPlatforms
3 Create the pulses of a single wave train to be transmitted sTransmitter
4 Compute the ranges and angles of the targets with respect to the radar
5 Radiate the signals to the targets sRadiator
6 Propagate the pulses to the target and back sChannels
7 Reflect the signals off the target sTargets
8 Receive the signal sCollector
9 Amplify the received signal sRcvPreamp
10 Form data cube

For each set of 10 pulses in the data cube:

1 Match filter each row (fast-time dimension) of the data cube.
2 Compute Doppler shifts of each row (slow-time dimension) of the data cube.

pri = 1/prf;

nsteps = 200;

for k = 1:nsteps

 for m = 1:num_pulse_int

 [ant_pos,ant_vel] = step(sRadarPlatform,pri);

 [tgt_pos,tgt_vel] = step(sTargetPlatforms,pri);

 sig = step(sWav);

 [s,tx_status] = step(sTransmitter,sig);

 [~,tgt_ang] = rangeangle(tgt_pos,ant_pos);

 tsig = step(sRadiator,s,tgt_ang);

 tsig = step(sChannels,tsig,ant_pos,tgt_pos,ant_vel,tgt_vel);

 rsig = step(sTargets,tsig);

 rsig = step(sCollector,rsig,tgt_ang);

 rx_pulses(:,m) = step(sRcvPreamp,rsig,~(tx_status>0));

 end

 Measure Intensity Levels Using the Intensity Scope

8-51

 rx_pulses = step(sMF,rx_pulses);

 MFdelay = size(MFcoef,1) - 1;

 rx_pulses = buffer(rx_pulses((MFdelay + 1):end), size(rx_pulses,1));

 rx_pulses = step(sTVG,rx_pulses);

 range = pulsint(rx_pulses,'noncoherent');

 step(RTIscope,range);

 dshift = step(dopplerFFT,rx_pulses.');

 dshift = fftshift(abs(dshift),1);

 step(DTIscope,mean(dshift,2));

 step(sRadarPlatform,.05);

 step(sTargetPlatforms,.05);

end

8 Detection

8-52

All of the targets lie on the x-axis. Two targets are moving along the x-axis and one is
stationary. Because the radar is at the origin, you can read the target speed directly from
the Doppler-Time Display window. The values agree with the specified velocities of -150,
150, and 0 m/sec.

9

Environment and Target Models

• “Free Space Path Loss” on page 9-2
• “Two-Ray Multipath Propagation” on page 9-9
• “Free-Space Propagation of Wideband Signals” on page 9-12
• “Radar Target” on page 9-14
• “Swerling 1 Target Models” on page 9-18
• “Swerling Target Models” on page 9-23
• “Swerling 3 Target Models” on page 9-29
• “Swerling 4 Target Models” on page 9-34
• “Clutter Modeling” on page 9-40
• “Barrage Jammer” on page 9-43

9 Environment and Target Models

9-2

Free Space Path Loss

In this section...

“Support for Modeling Propagation in Free Space” on page 9-2
“Free Space Path Loss in Decibels” on page 9-2
“Propagation of a Linear FM Pulse Waveform to and from a Target” on page 9-3
“One-Way and Two-Way Propagation” on page 9-4
“Propagation from Stationary Radar to Moving Target” on page 9-5

Support for Modeling Propagation in Free Space

Propagation environments have significant effects on the amplitude, phase, and shape
of propagating space-time wavefields. In some cases, you may want to simulate a
system that propagates narrowband signals through free space. If so, you can use the
phased.FreeSpace System object to model the range-dependent time delay, phase shift,
Doppler shift, and gain effects.

Consider this object as a point-to-point propagation channel. By setting object properties,
you can customize certain characteristics of the environment and the signals propagating
through it, including:

• Propagation speed and sampling rate of the signal you are propagating
• Signal carrier frequency
• Whether the object models one-way or two-way propagation

Each time you call step on a phased.FreeSpace object, you specify not only the signal
to propagate, but also the location and velocity of the signal origin and destination.

You can use fspl to determine the free space path loss, in decibels, for a given distance
and wavelength.

Free Space Path Loss in Decibels

Assume a transmitter is located at [1000; 250; 10] in the global coordinate system.
Assume a target is located at [3000; 750; 20]. The transmitter operates at 1 GHz.

 Free Space Path Loss

9-3

Determine the free space path loss in decibels for a narrowband signal propagating to
and from the target.

[tgtrng,~] = rangeangle([3000; 750; 20],[1000; 250; 10]);

% Multiply range by two for two-way propagation

tgtrng = 2*tgtrng;

% Determine the wavelength for 1 GHz

lambda = physconst('LightSpeed')/1e9;

L = fspl(tgtrng,lambda)

The free space path loss in decibels is approximately 105 dB. You can express this value
as:

Loss = pow2db((4*pi*tgtrng/lambda)^2)

which is a direct implementation of the equation for free space path loss.

Propagation of a Linear FM Pulse Waveform to and from a Target

Construct a linear FM pulse waveform 50 ms in duration with a bandwidth of 100 kHz.
Model the range-dependent time delay and amplitude loss incurred during two-way
propagation. The pulse propagates between the transmitter located at [1000; 250;
10] and a target location of [3000; 750; 20].

hwav = phased.LinearFMWaveform('SweepBandwidth',1e5,...

 'PulseWidth',5e-5,'OutputFormat','Pulses',...

 'NumPulses',1,'SampleRate',1e6,'PRF',1e4);

wf = step(hwav);

hpath = phased.FreeSpace('SampleRate',1e6,...

 'TwoWayPropagation',true,'OperatingFrequency',1e9);

y = step(hpath,wf,[1000; 250; 10],[3000; 750; 20],...

 [0;0;0],[0;0;0]);

Plot the magnitude of the transmitted and received pulse to show the amplitude loss and
time delay. Scale the time axis in microseconds.

t = unigrid(0,1/hwav.SampleRate,1/hwav.PRF,'[)');

subplot(2,1,1)

plot(t.*1e6,abs(wf)); title('Magnitude of Transmitted Pulse');

xlabel('Microseconds'); ylabel('Magnitude');

subplot(2,1,2);

plot(t.*1e6,abs(y)); title('Magnitude of Received Pulse');

9 Environment and Target Models

9-4

xlabel('Microseconds'); ylabel('Magnitude');

The delay in the received pulse is approximately 14 μs, which is exactly what you expect
for a distance of 4.123 km at the speed of light.

One-Way and Two-Way Propagation

The TwoWayPropagation property of the phased.FreeSpace object enables you to use
the step method for one- or two-way propagation. The following example demonstrates
how to use this property for a single linear FM pulse propagated to and from a target.
The sensor is a single isotropic radiating antenna operating at 1 GHz located at [1000;
250; 10]. The target is located at [3000; 750; 20] and has a nonfluctuating RCS of
1 square meter.

The following code constructs the required objects and calculates the range and angle
from the antenna to the target.

hwav = phased.LinearFMWaveform('SweepBandwidth',1e5,...

 'PulseWidth',5e-5,'OutputFormat','Pulses',...

 'NumPulses',1,'SampleRate',1e6);

hant = phased.IsotropicAntennaElement(...

 'FrequencyRange',[500e6 1.5e9]);

htx = phased.Transmitter('PeakPower',1e3,'Gain',20);

hrad = phased.Radiator('Sensor',hant,'OperatingFrequency',1e9);

 Free Space Path Loss

9-5

hpath = phased.FreeSpace('SampleRate',1e6,...

 'TwoWayPropagation',true,'OperatingFrequency',1e9);

htgt = phased.RadarTarget('MeanRCS',1,'Model','Nonfluctuating');

hcol = phased.Collector('Sensor',hant,'OperatingFrequency',1e9);

sensorpos = [3000; 750; 20];

tgtpos = [1000; 250; 10];

[tgtrng,tgtang] = rangeangle(sensorpos,tgtpos);

Because the TwoWayPropagation property is set to true, you call the step method for
the phased.FreeSpace object only once. The following code calls the step after the
pulse is radiated from the antenna and before the pulse is reflected from the target.

pulse = step(hwav); % Generate pulse

pulse = step(htx,pulse); % Transmit pulse

pulse = step(hrad,pulse,tgtang); % Radiate pulse

% Propagate pulse to and from target

pulse = step(hpath,pulse,sensorpos,tgtpos,[0;0;0],[0;0;0]);

pulse = step(htgt,pulse); % Reflect pulse

sig = step(hcol,pulse,tgtang); % Collect pulse

Alternatively, if you prefer to break up the two-way propagation into two separate calls
to the step method, you can do so by setting the TwoWayPropagation property to false.

hpath = phased.FreeSpace('SampleRate',1e9,...

 'TwoWayPropagation',false,'OperatingFrequency',1e6);

pulse = step(hwav); % Generate pulse

pulse = step(htx,pulse); % Transmit pulse

pulse = step(hrad,pulse,tgtang); % Radiate pulse

% Propagate pulse from the antenna to the target

pulse = step(hpath,pulse,sensorpos,tgtpos,[0;0;0],[0;0;0]);

pulse = step(htgt,pulse); % Reflect pulse

% Propagate pulse from the target to the antenna

pulse = step(hpath,pulse,tgtpos,sensorpos,[0;0;0],[0;0;0]);

sig = step(hcol,pulse,tgtang); % Collect pulse

Propagation from Stationary Radar to Moving Target

This example shows how to propagate a signal in free space from a stationary radar to a
moving target.

Define the signal’s sample rate, propagation speed, and carrier frequency. Define the
signal as a sinusoid of frequency 150 Hz.

9 Environment and Target Models

9-6

fs = 1000;

c = 1500;

fc = 300e3;

N = 1024;

t = (0:N-1)'/fs;

x = exp(1i*2*pi*150*t);

Assume the target is approaching the radar at 0.5 m/s, and the radar is stationary. Find
the Doppler shift that corresponds to this relative speed.

v = 0.5;

dop = speed2dop(v,c/fc)

dop =

 100

Create a phased.FreeSpace object, and use it to propagate the signal from the radar to
the target. Assume the radar is at (0, 0, 0) and the target is at (100, 0, 0).

hpath = phased.FreeSpace('SampleRate',fs,...

 'PropagationSpeed',c,'OperatingFrequency',fc);

origin_pos = [0;0;0]; dest_pos = [100;0;0];

origin_vel = [0;0;0]; dest_vel = [-v;0;0];

y = step(hpath,x,origin_pos,dest_pos,origin_vel,dest_vel);

Plot the spectrum of the transmitted signal. The peak at 150 Hz reflects the frequency of
the signal.

figure;

window = 64;

ovlp = 32;

[Pxx,F] = pwelch(x,window,ovlp,N,fs);

plot(F,10*log10(Pxx));

grid;

xlabel('Frequency (Hz)');

ylabel('Power/Frequency (dB/Hz)');

title('Transmitted Signal')

 Free Space Path Loss

9-7

Plot the spectrum of the propagated signal. The peak at 250 Hz reflects the frequency of
the signal plus the Doppler shift of 100 Hz.

figure;

window = 64;

ovlp = 32;

[Pyy,F] = pwelch(y,window,ovlp,N,fs);

plot(F,10*log10(Pyy));

grid;

xlabel('Frequency (Hz)');

ylabel('Power/Frequency (dB/Hz)');

title('Propagated Signal');

9 Environment and Target Models

9-8

 Two-Ray Multipath Propagation

9-9

Two-Ray Multipath Propagation

A two-ray propagation channel is the next step up in complexity from a free-space
channel and is the simplest case of a multipath propagation environment. The free-
space channel models a straight-line line-of-sight path from point 1 to point 2. In a
two-ray channel, the medium is specified as a homogeneous, isotropic medium with
a reflecting planar boundary. The boundary is always set at z = 0. There are at most
two rays propagating from point 1 to point 2. The first ray path propagates along the
same line-of-sight path as in the free-space channel (see the phased.FreeSpace System
object). The line-of-sight path is often called the direct path. The second ray reflects off
the boundary before propagating to point 2. Reflection angles are specified by the law
of reflection which equates the angle of incidence to the angle of reflection. In short-
range simulations such as cellular communications systems, automotive radars, ground
terminal radar, and sonar, you can assume that the reflecting surface, the ground or
ocean surface, is flat.

The phased.TwoRayChannel System object models propagation time delay, phase shift,
Doppler shift, and loss effects for both paths. For the reflected path, loss effects include
reflection loss at the boundary.

The figure illustrates two propagation paths. From the source position, ss, and the
receiver position, sr, you can compute the arrival angles of both paths, θ′los and θ′rp.
The arrival angles are the elevation and azimuth angles of the arriving radiation with
respect to a local coordinate system. In this case, the local coordinate system coincides
with the global coordinate system. You can also compute the transmitting angles, θlos
and θrp. In the global coordinates, the angle of reflection at the boundary is the same
as the angle θrp or θ′rp. The reflection angle is important to know when you use angle-
dependent reflection-loss data. You can determine the reflection angle by using the
rangeangle function and setting the reference axes to the global coordinate system.
The total path length for the line-of-sight path is shown in the figure by Rlos which is
equal to the geometric distance between source and receiver. The total path length for
the reflected path is given by Rrp= R1 + R2. The quantity L is the ground range between
source and receiver.

9 Environment and Target Models

9-10

You can easily derive exact formulas for path lengths and angles in terms of the ground
range and objects heights in the global coordinate system.

 Two-Ray Multipath Propagation

9-11

r

r r

r

R x x

R R z z L

R
z

z z
z z L

R
z

z

s r

los r s

r

r z
r s

s

s

= -

= = -() +

=
+

+() +

=
+

2 2

1

2 2

2 zz
z z L

R R R z z L

z z

L

r
r s

rp r s

los
s r

rp

+() +

= + = +() +

=
-()

=

2 2

1 2

2 2

tan

tan

q

q --
+()

¢ = -

¢ =

z z

L

s r

los los

rp rp

q q

q q

9 Environment and Target Models

9-12

Free-Space Propagation of Wideband Signals

Propagate a wideband signal with three tones in an underwater acoustic with constant
speed of propagation. You can model this environment as free space. The center
frequency is 100 kHz and the frequencies of the three tones are 75 kHz, 100 kHz, and 125
kHz, respectively. Plot the spectrum of the original signal and the propagated signal to
observe the Doppler effect. The sampling frequency is 100 kHz.

c = 1500;

fc = 100e3;

fs = 100e3;

relfreqs = [-25000,0,25000];

Set up a stationary radar and moving target and compute the expected Doppler.

rpos = [0;0;0];

rvel = [0;0;0];

tpos = [30/fs*c; 0;0];

tvel = [45;0;0];

dop = -tvel(1)./(c./(relfreqs + fc));

Create a signal and propagate the signal to the moving target.

t = (0:199)/fs;

x = sum(exp(1i*2*pi*t.'*relfreqs),2);

wbchan = phased.WidebandFreeSpace(...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc,...

 'SampleRate',fs);

y = step(wbchan,x,rpos,tpos,rvel,tvel);

Plot the spectra of the original signal and the Doppler-shifted signal.

periodogram([x y],rectwin(size(x,1)),1024,fs,'centered')

ylim([-150 0])

legend('original','propagated');

 Free-Space Propagation of Wideband Signals

9-13

For this wideband signal, you can see that the magnitude of the Doppler shift increases
with frequency. In contrast, for narrowband signals, the Doppler shift is assumed
constant over the band.

9 Environment and Target Models

9-14

Radar Target

The phased.RadarTarget object models a reflected signal from a target with
nonfluctuating or fluctuating radar cross section (RCS). This object has the following
modifiable properties:

• MeanRCSSource — Source of the target's mean radar cross section
• MeanRCS — Target's mean RCS
• Model — Statistical model for the target's RCS
• PropagationSpeed — Signal propagation speed
• OperatingFrequency — Operating frequency
• SeedSource — Source of the seed for the random number generator to generate the

target's random RCS values
• Seed — Seed for the random number generator

Create a radar target with a nonfluctuating RCS of 1 square meter and an operating
frequency of 300 MHz. Specify a wave propagation speed equal to the speed of light.

hr = phased.RadarTarget('Model','nonfluctuating','MeanRCS',1,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',3e8);

The waveform incident on the target is scaled by the factor:

G =
4

2

ps

l

Here, σ represents the target mean RCS, and λ is the wavelength of the operating
frequency. Each element of the signal incident on the target is scaled by the preceding
factor.

Create a target with a nonfluctuating RCS of 1 square meter. Set the operating frequency
to 1 GHz. Set the signal incident on the target to be a vector of ones to demonstrate the
gain factor.

hr = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',1e9);

x = ones(10,1);

y = step(hr,x);

 Radar Target

9-15

The output vector y is equal to 11.8245*ones(10,1). The amplitude scaling factor
equals:

lambda = hr.PropagationSpeed/hr.OperatingFrequency;

G = sqrt(4*pi*1/lambda^2)

The previous examples used nonfluctuating values for the target's RCS. This model is not
valid in many scenarios. There are several cases where the RCS exhibits relatively small
or large magnitude fluctuations. These fluctuations can occur rapidly on pulse-to-pulse,
or more slowly, on scan-to-scan time scales:

• Several small randomly distributed reflectors with no dominant reflector —
This target, at close range or when the radar uses pulse-to-pulse frequency agility,
can exhibit large magnitude rapid (pulse-to-pulse) fluctuations in the RCS. That same
complex reflector at long range with no frequency agility can exhibit large magnitude
fluctuations in the RCS over a longer time scale (scan-to-scan).

• Dominant reflector along with several small reflectors — The reflectors in this
target can exhibit small magnitude fluctuations on pulse-to-pulse or scan-to-scan time
scales, subject to:

• How rapidly the aspect changes
• Whether the radar uses frequency agility

To account for significant fluctuations in the RCS, you need to use statistical models.
The four Swerling models, described in the following table, are widely used to cover these
kinds of fluctuating-RCS cases.

Swerling Case Number Description

I Scan-to-scan decorrelation. Rayleigh/
exponential PDF — A number of randomly
distributed scatterers with no dominant
scatterer.

II Pulse-to-pulse decorrelation. Rayleigh/
exponential PDF — A number of randomly
distributed scatterers with no dominant
scatterer.

III Scan-to-scan decorrelation — Chi-square
PDF with 4 degrees of freedom. A number
of scatterers with one scatterer dominant.

9 Environment and Target Models

9-16

Swerling Case Number Description

IV Pulse-to-pulse decorrelation — Chi-square
PDF with 4 degrees of freedom. A number
of scatterers with one scatterer dominant.

You can simulate a Swerling target model by setting the Model property. Use the step
method and set the UPDATERCS input argument to true or false. Setting UPDATERCS to
true updates the RCS value according to the specified probability model each time you
call step. If you set UPDATERCS to false, the previous RCS value is used.

Model Pulse Reflection from a Nonfluctuating Target

This example creates and transmits a linear FM waveform with a 1 GHz carrier
frequency. The waveform is transmitted and collected by an isotropic antenna with
a back-baffled response. The waveform propagates to and from a target with a
nonfluctuating RCS of 1 square meter. The target is located approximately 1414 meters
from the antenna at an angle of 45 degrees azimuth and 0 degrees elevation.

% Create objects and assign property values

% Isotropic antenna element

hant = phased.IsotropicAntennaElement('BackBaffled',true);

% Location of the antenna

harraypos = phased.Platform('InitialPosition',[0;0;0]);

% Location of the radar target

hrfpos = phased.Platform('InitialPosition',[1000; 1000; 0]);

% Linear FM waveform

hwav = phased.LinearFMWaveform('PulseWidth',100e-6);

% Transmitter

htx = phased.Transmitter('PeakPower',1e3,'Gain',40);

% Waveform radiator

hrad = phased.Radiator('OperatingFrequency',1e9, ...

 'Sensor',hant);

% Propagation environment to and from the RadarTarget

hspace = phased.FreeSpace('OperatingFrequency',1e9,...

 'TwoWayPropagation',true);

% Radar target

hr = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',1e9);

% Collector

hc = phased.Collector('OperatingFrequency',1e9,...

 'Sensor',hant);

% Implement system

wf = step(hwav); % generate waveform

 Radar Target

9-17

txwf = step(htx,wf); % transmit waveform

wfrad = step(hrad,txwf,[0 0]'); % radiate waveform

% propagate waveform to and from the RadarTarget

wfprop = step(hspace,wfrad,harraypos.InitialPosition,...

 hrfpos.InitialPosition,[0;0;0],[0;0;0]);

wfreflect = step(hr,wfprop); % reflect waveform

wfcol = step(hc,wfreflect,[45 0]'); % collect waveform

9 Environment and Target Models

9-18

Swerling 1 Target Models

The example presents a scenario of a rotating monostatic radar and a target having
a radar cross-section described by a Swerling 1 model. In this example, the radar and
target are stationary.

Swerling 1 versus Swerling 2 Models

In Swerling 1 and Swerling 2 target models, the total RCS arises from many independent
small scatterers of approximately equal individual RCS. The total RCS may vary with
every pulse in a scan (Swerling 2) or may be constant over a complete scan consisting of
multiple pulses (Swerling 1). In either case, the statistics obey a chi-squared probability
density function with two degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds
corresponding to a rotation rate or scan rate of 72 degrees/sec.

Trot = 5.0;

rotrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time
that a target is illuminated by the main beam, radar pulses strike the target and reflect
back to the radar. The time period during which the target is illuminated is called the
dwell time. This time period is also called a scan. The example will process 3 scans of the
target.

HPBW = 3.0;

Tdwell = HPBW/rotrate;

Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse
repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI).
Assume 5000 pulses are transmitted per second.

prf = 5000.0;

pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);

 Swerling 1 Target Models

9-19

Set up a Swerling 1 radar model

You create a Swerling 1 target by properly employing the step method of the
RadarTarget System object™. To effect a Swerling 1 model, set the Model property of
the phased.RadarTarget System object™ to either 'Swerling1' or 'Swerling2'.
Both are equivalent. Then, at the first call to the step method at the beginning of the
scan, set the updatercs argument to true. Set updatercs to false for the remaining
calls to step during the scan. This means that the radar cross section is only updated at
the beginning of a scan and remains constant for the remainder of the scan.

Set the target model to 'Swerling1'.

rng default

tgtmodel = 'Swerling1';

Set up radar model System object™ components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1GHz.

fc = 1e9;

sAnt = phased.IsotropicAntennaElement('BackBaffled',true);

SRad = phased.Radiator('OperatingFrequency',fc, ...

 'Sensor',sAnt);

Specify the location of the stationary antenna.

sRadar = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

sTarget = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step
method.

sWav = phased.LinearFMWaveform('PulseWidth',50e-6,...

 'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifer.

sTransmit = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

sFS = phased.FreeSpace('OperatingFrequency',fc,...

9 Environment and Target Models

9-20

 'TwoWayPropagation',true);

Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 1
or 2. You can use Swerling 1 or 2 interchangeably.

sTgt = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...

 'Model',tgtmodel);

Set up the radar collector.

sColl = phased.Collector('OperatingFrequency',1e9,...

 'Sensor',sAnt);

Define a matched filter to process the incoming signal.

waveform = step(sWav);

sMF = phased.MatchedFilter(...

 'Coefficients',getMatchedFilter(sWav));

Processing loop for 3 scans of a Swerling 1 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar rarget
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes

z = zeros(Nscan,Np);

tp = zeros(Nscan,Np);

Enter the loop. Set updatercs to true only for the first pulse of the scan.

for m = 1:Nscan

 t0 = (m-1)*Trot;

 t = t0;

 for k = 1:Np

 if k == 1

 Swerling 1 Target Models

9-21

 updatercs = true;

 else

 updatercs = false;

 end

 t = t + pri;

 TXwaveform = step(sTransmit,waveform);

Find the radar and target positions

 [xradar,vradar] = step(sRadar,t);

 [xtgt,vtgt] = step(sTarget,t);

Radiate waveform to target

 [~,ang] = rangeangle(xtgt,xradar);

 WFrad = step(SRad,TXwaveform,ang);

Propagate waveform to and from the target

 WFprop = step(sFS,WFrad,sRadar.InitialPosition,...

 sTarget.InitialPosition,[0;0;0],[0;0;0]);

Reflect waveform from target. Set the updatercs flag.

 WFreflect = step(sTgt,WFprop,updatercs);

Collect the received waveform

 WFcol = step(sColl,WFreflect,ang);

Apply matched filter to incoming signal

 y = step(sMF,WFcol);

 z(m,k) = max(abs(y));

 tp(m,k) = t;

 end

end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')

xlabel('Time (sec)')

ylabel('Pulse Amplitudes')

9 Environment and Target Models

9-22

Notice that the pulse amplitudes are constant within a scan.

 Swerling Target Models

9-23

Swerling Target Models

The example illustrates the use of Swerling target models to describe the fluctuations
in radar cross-section. The scenario consists of a rotating monostatic radar and a target
having a radar cross-section described by a Swerling 2 model. In this example, the radar
and target are stationary.

Swerling 1 versus Swerling 2 Models

In Swerling 1 and Swerling 2 target models, the total RCS arises from many independent
small scatterers of approximately equal individual RCS. The total RCS may vary with
every pulse in a scan (Swerling 2) or may be constant over a complete scan consisting of
multiple pulses (Swerling 1). In either case, the statistics obey a chi-squared probability
density function with two degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds
corresponding to a rotation or scan rate of 72 degrees/sec.

Trot = 5.0;

scanrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time
that a target is illuminated by the main beam, radar pulses strike the target and reflect
back to the radar. The time period during which the target is illuminated is called the
dwell time. This time is also called a scan. The radar will process 3 scans of the target.

HPBW = 3.0;

Tdwell = HPBW/scanrate;

Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse
repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI).
Assume 5000 pulses are transmitted per second.

prf = 5000.0;

pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);

9 Environment and Target Models

9-24

Set up a Swerling 2 model

You create a Swerling 2 target by properly employing the step method of the
RadarTarget System object™. To effect a Swerling 2 model, set the Model property of
the phased.RadarTarget System object™ to either 'Swerling1' or 'Swerling2'.
Both are equivalent. Then, at the every call to the step method, set the updatercs
argument to true. This means that the radar cross-section is updated at every pulse.

Set the target model to 'Swerling1' .

rng default

tgtmodel = 'Swerling1';

Set up radar model System object™ components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1GHz.

fc = 1e9;

sAnt = phased.IsotropicAntennaElement('BackBaffled',true);

SRad = phased.Radiator('OperatingFrequency',fc, ...

 'Sensor',sAnt);

Specify the location of the stationary antenna.

sRadar = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

sTarget = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step
method.

sWav = phased.LinearFMWaveform('PulseWidth',50e-6,...

 'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifer.

sTransmit = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

sFS = phased.FreeSpace('OperatingFrequency',fc,...

 Swerling Target Models

9-25

 'TwoWayPropagation',true);

Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 1
or 2. You can use Swerling 1 or 2 interchangeably.

sTgt = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...

 'Model',tgtmodel);

Set up the radar collector.

sColl = phased.Collector('OperatingFrequency',1e9,...

 'Sensor',sAnt);

Define a matched filter to process the incoming signal.

waveform = step(sWav);

sMF = phased.MatchedFilter(...

 'Coefficients',getMatchedFilter(sWav));

Processing loop for 3 scans of a Swerling 2 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar rarget
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes

z = zeros(Nscan,Np);

tp = zeros(Nscan,Np);

Enter the loop. Set updatercs to true only for the first pulse of the scan.

for m = 1:Nscan

 t0 = (m-1)*Trot;

 t = t0;

 updatercs = true;

9 Environment and Target Models

9-26

 for k = 1:Np

 t = t + pri;

 TXwaveform = step(sTransmit,waveform);

Find the radar and target positions

 [xradar,vradar] = step(sRadar,t);

 [xtgt,vtgt] = step(sTarget,t);

Radiate waveform to target

 [~,ang] = rangeangle(xtgt,xradar);

 WFrad = step(SRad,TXwaveform,ang);

Propagate waveform to and from the target

 WFprop = step(sFS,WFrad,sRadar.InitialPosition,...

 sTarget.InitialPosition,[0;0;0],[0;0;0]);

Reflect waveform from target. Set the updatercs flag.

 WFreflect = step(sTgt,WFprop,updatercs);

Collect the received waveform

 WFcol = step(sColl,WFreflect,ang);

Apply matched filter to incoming signal

 y = step(sMF,WFcol);

 z(m,k) = max(abs(y));

 tp(m,k) = t;

 end

end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')

xlabel('Time (sec)')

ylabel('Pulse Amplitude')

 Swerling Target Models

9-27

Notice that the pulse amplitudes vary within a scan.

Histogram the received pulse amplitudes

figure;

hist(z(:),25)

xlabel('Pulse Amplitude')

ylabel('Count')

9 Environment and Target Models

9-28

 Swerling 3 Target Models

9-29

Swerling 3 Target Models

The example presents a scenario of a rotating monostatic radar and a target having
a radar cross-section described by a Swerling 3 model. In this example, the radar and
target are stationary.

Swerling 3 versus Swerling 4 Models

In Swerling 3 and Swerling 4 target models, the total RCS arises from a target consisting
of one large scattering surface with several other small scattering surfaces. The total
RCS may vary with every pulse in a scan (Swerling 4) or may be constant over a complete
scan consisting of multiple pulses (Swerling 3). In either case, the statistics obey a chi-
squared probability density function with four degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds
corresponding to a rotation or scan rate of 72 degrees/sec.

Trot = 5.0;

scanrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time
that a target is illuminated by the main beam, radar pulses strike the target and reflect
back to the radar. The time period during which the target is illuminated is called the
dwell time. This time is also called a scan. The radar will process 3 scans of the target.

HPBW = 3.0;

Tdwell = HPBW/scanrate;

Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse
repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI).
Assume 5000 pulses are transmitted per second.

prf = 5000.0;

pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);

9 Environment and Target Models

9-30

Set up Swerling 3 radar model

You create a Swerling 3 target by properly employing the step method of the
RadarTarget System object™. To effect a Swerling 3 model, set the Model property of
the phased.RadarTarget System object™ to either 'Swerling3' or 'Swerling4'.
Both are equivalent. Then, at the first call to the step method at the beginning of the
scan, set the updatercs argument to true. Set updatercs to false for the remaining
calls to step during the scan. This means that the radar cross section is only updated at
the beginning of a scan and remains constant for the remainder of the scan.

Set the target model to 'Swerling3' .

rng default

tgtmodel = 'Swerling3';

Set up radar model System object™ components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1GHz.

fc = 1e9;

sAnt = phased.IsotropicAntennaElement('BackBaffled',true);

SRad = phased.Radiator('OperatingFrequency',fc, ...

 'Sensor',sAnt);

Specify the location of the stationary antenna.

sRadar = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

sTarget = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step
method.

sWav = phased.LinearFMWaveform('PulseWidth',50e-6,...

 'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifer.

sTransmit = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

sFS = phased.FreeSpace('OperatingFrequency',fc,...

 Swerling 3 Target Models

9-31

 'TwoWayPropagation',true);

Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 3
or 4. You can use Swerling 3 or 4 interchangeably.

sTgt = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...

 'Model',tgtmodel);

Set up the radar collector.

sColl = phased.Collector('OperatingFrequency',1e9,...

 'Sensor',sAnt);

Define a matched filter to process the incoming signal.

waveform = step(sWav);

sMF = phased.MatchedFilter(...

 'Coefficients',getMatchedFilter(sWav));

Processing loop for 3 scans of a Swerling 3 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar rarget
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes

z = zeros(Nscan,Np);

tp = zeros(Nscan,Np);

Enter the loop. Set updatercs to true only for the first pulse of the scan.

for m = 1:Nscan

 t0 = (m-1)*Trot;

 t = t0;

 for k = 1:Np

 if k == 1

9 Environment and Target Models

9-32

 updatercs = true;

 else

 updatercs = false;

 end

 t = t + pri;

 TXwaveform = step(sTransmit,waveform);

Find the radar and target positions

 [xradar,vradar] = step(sRadar,t);

 [xtgt,vtgt] = step(sTarget,t);

Radiate waveform to target

 [~,ang] = rangeangle(xtgt,xradar);

 WFrad = step(SRad,TXwaveform,ang);

Propagate waveform to and from the target

 WFprop = step(sFS,WFrad,sRadar.InitialPosition,...

 sTarget.InitialPosition,[0;0;0],[0;0;0]);

Reflect waveform from target. Set the updatercs flag.

 WFreflect = step(sTgt,WFprop,updatercs);

Collect the received waveform

 WFcol = step(sColl,WFreflect,ang);

Apply matched filter to incoming signal

 y = step(sMF,WFcol);

 z(m,k) = max(abs(y));

 tp(m,k) = t;

 end

end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')

xlabel('Time (sec)')

ylabel('Pulse Amplitude')

 Swerling 3 Target Models

9-33

Notice that the pulse amplitudes are constant within a scan.

9 Environment and Target Models

9-34

Swerling 4 Target Models

The example presents a scenario of a rotating monostatic radar and a target having
a radar cross-section described by a Swerling 4 model. In this example, the radar and
target are stationary.

Swerling 3 versus Swerling 4 Targets

In Swerling 3 and Swerling 4 target models, the total RCS arises from a target consisting
of one large scattering surface with several other small scattering surfaces. The total
RCS may vary with every pulse in a scan (Swerling 4) or may be constant over a complete
scan consisting of multiple pulses (Swerling 3). In either case, the statistics obey a chi-
squared probability density function with four degrees of freedom.

Dwell Time and Radar Scan

For simplicity, start with a rotating radar having a rotation time of 5 seconds
corresponding to a rotation or scan rate of 72 degrees/sec.

Trot = 5.0;

scanrate = 360/Trot;

The radar has a main half-power beam width (HPBW) of 3.0 degrees. During the time
that a target is illuminated by the main beam, radar pulses strike the target and reflect
back to the radar. The time period during which the target is illuminated is called the
dwell time. This time is also called a scan. The radar will process 3 scans of the target.

HPBW = 3.0;

Tdwell = HPBW/scanrate;

Nscan = 3;

The number of pulses that arrive on target during the dwell time depends upon the pulse
repetition frequency (PRF). PRF is the inverse of the pulse repetition interval (PRI).
Assume 5000 pulses are transmitted per second.

prf = 5000.0;

pri = 1/prf;

The number of pulses in one dwell time is

Np = floor(Tdwell*prf);

 Swerling 4 Target Models

9-35

Set up a Swerling 4 model

You create a Swerling 4 target by properly employing the step method of the
RadarTarget System object™. To effect a Swerling 4 model, set the Model property of
the phased.RadarTarget System object™ to either 'Swerling3' or 'Swerling4'.
Both are equivalent. Then, at the every call to the step method, set the updatercs
argument to true. This means that the radar cross section is updated for every pulse in
the scan.

Set the target model to 'Swerling4' .

rng default

tgtmodel = 'Swerling4';

Set up radar model System object™ components

Set up the radiating antenna. Assume the operating frequency of the antenna is 1GHz.

fc = 1e9;

sAnt = phased.IsotropicAntennaElement('BackBaffled',true);

SRad = phased.Radiator('OperatingFrequency',fc, ...

 'Sensor',sAnt);

Specify the location of the stationary antenna.

sRadar = phased.Platform('InitialPosition',[0;0;0]);

Specify the location of a stationary target.

sTarget = phased.Platform('InitialPosition',[2000; 0; 0]);

The transmitted signal is a linear FM waveform. Transmit one pulse per call to the step
method.

sWav = phased.LinearFMWaveform('PulseWidth',50e-6,...

 'OutputFormat','Pulses','NumPulses',1);

Set up the transmitting amplifer.

sTransmit = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Set up the propagation environment to be free space.

sFS = phased.FreeSpace('OperatingFrequency',fc,...

9 Environment and Target Models

9-36

 'TwoWayPropagation',true);

Specify the radar target to have a mean RCS of 1 m2 and be of the Swerling model type 1
or 2. You can use Swerling 1 or 2 interchangeably.

sTgt = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...

 'Model',tgtmodel);

Set up the radar collector.

sColl = phased.Collector('OperatingFrequency',1e9,...

 'Sensor',sAnt);

Define a matched filter to process the incoming signal.

waveform = step(sWav);

sMF = phased.MatchedFilter(...

 'Coefficients',getMatchedFilter(sWav));

Processing loop for 3 scans of a Swerling 4 target

1 Generate waveform with unit amplitude
2 Amplify the transmit waveform
3 Radiate the waveform in the desired direction to the target
4 Propagate the waveform to and from the radar rarget
5 Reflect waveform from radar target.
6 Collect radiation to create received signal
7 Match filter received signal

Provide memory for radar return amplitudes

z = zeros(Nscan,Np);

tp = zeros(Nscan,Np);

Enter the loop. Set updatercs to true only for all pulses of the scan.

for m = 1:Nscan

 t0 = (m-1)*Trot;

 t = t0;

 updatercs = true;

 Swerling 4 Target Models

9-37

 for k = 1:Np

 t = t + pri;

 TXwaveform = step(sTransmit,waveform);

Find the radar and target positions

 [xradar,vradar] = step(sRadar,t);

 [xtgt,vtgt] = step(sTarget,t);

Radiate waveform to target

 [~,ang] = rangeangle(xtgt,xradar);

 WFrad = step(SRad,TXwaveform,ang);

Propagate waveform to and from the target

 WFprop = step(sFS,WFrad,sRadar.InitialPosition,...

 sTarget.InitialPosition,[0;0;0],[0;0;0]);

Reflect waveform from target. Set the updatercs flag.

 WFreflect = step(sTgt,WFprop,updatercs);

Collect the received waveform

 WFcol = step(sColl,WFreflect,ang);

Apply matched filter to incoming signal

 y = step(sMF,WFcol);

 z(m,k) = max(abs(y));

 tp(m,k) = t;

 end

end

Plot the pulse amplitudes

Plot the amplitudes of the pulses for the scan as a function of time.

plot(tp(:),z(:),'.')

xlabel('Time (sec)')

ylabel('Pulse Amplitude')

9 Environment and Target Models

9-38

Notice that the pulse amplitudes vary within a scan.

Histogram the received pulse amplitudes

hist(z(:),25)

xlabel('Pulse Amplitude')

 Swerling 4 Target Models

9-39

9 Environment and Target Models

9-40

Clutter Modeling

In this section...

“Surface Clutter Overview” on page 9-40
“Approaches for Clutter Simulation or Analysis” on page 9-40
“Considerations for Setting Up a Constant Gamma Clutter Simulation” on page 9-41
“Related Examples” on page 9-42

Surface Clutter Overview

Surface clutter refers to reflections of a radar signal from land, sea, or the land-sea
interface. When trying to detect or track targets moving on or above the surface, you
must be able to distinguish between clutter and the targets of interest. For example, a
ground moving target indicator (GMTI) radar application should detect targets on the
ground while accounting for radar reflections from trees or houses.

If you are simulating a radar system, you might want to incorporate surface clutter into
the simulation to ensure the system can overcome the effects of surface clutter. If you are
analyzing the statistical performance of a radar system, you might want to incorporate
clutter return distributions into the analysis.

Approaches for Clutter Simulation or Analysis

Phased Array System Toolbox software offers these tools to help you incorporate surface
clutter into your simulation or analysis:

• phased.ConstantGammaClutter, a System object that simulates clutter returns using
the constant gamma model

• Utility functions to help you implement your own clutter models:

• billingsleyicm

• depressionang

• effearthradius

• grazingang

• horizonrange

• surfclutterrcs

 Clutter Modeling

9-41

• surfacegamma

Considerations for Setting Up a Constant Gamma Clutter Simulation

When you use phased.ConstantGammaClutter, you must configure the object for the
situation you are simulating, and confirm that the assumptions the software makes are
valid for your system.

Physical Configuration Properties

The ConstantGammaClutter object has properties that correspond to physical aspects
of the situation you are modeling. These properties include:

• Propagation speed, sample rate, and pulse repetition frequency of the signal
• Operating frequency of the system
• Altitude, speed, and direction of the radar platform
• Depression angle of the broadside of the radar antenna array

Clutter-Related Properties

The object has properties that correspond to the clutter characteristics, location, and
modeling fidelity. These properties include:

• Gamma parameter that depends on the terrain type and system’s operating
frequency.

• Azimuth coverage and maximum range for the clutter simulation.
• Azimuth span of each clutter patch. The software internally divides the clutter ring

into a series of adjacent, nonoverlapping clutter patches.
• Clutter coherence time. This value indicates how frequently the software changes the

set of random numbers in the clutter simulation.

In the simulation, you can use identical random numbers over a time interval or
uncorrelated random numbers. Simulation behavior slightly differs from reality,
where a moving platform produces clutter returns that are correlated with each other
over small time intervals.

Working with Samples or Pulses

The ConstantGammaClutter object has properties that let you obtain results in a
convenient format. Using the OutputFormat property, you can choose to have the step
method produce a signal that represents:

9 Environment and Target Models

9-42

• A fixed number of pulses. You indicate the number of pulses using the NumPulses
property of the object.

• A fixed number of samples. You indicate the number of samples using the
NumSamples property of the object. Typically, you use the number of samples in one
pulse. In staggered PRF applications, you might find this option more convenient
because the step output always has the same matrix size.

Assumptions

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates

how frequently the software changes the set of random numbers in the clutter
simulation.

• The signal is narrowband. Thus, the spatial response can be approximated by a phase
shift. Similarly, the Doppler shift can be approximated by a phase shift.

• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Related Examples

• Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
• Introduction to Space-Time Adaptive Processing
• “Example: DPCA Pulse Canceller for Clutter Rejection” on page 7-8
• “Example: Adaptive DPCA Pulse Canceller” on page 7-13
• “Example: Sample Matrix Inversion (SMI) Beamformer” on page 7-18

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/introduction-to-space-time-adaptive-processing.html

 Barrage Jammer

9-43

Barrage Jammer

In this section...

“Support for Modeling Barrage Jammer” on page 9-43
“Model Barrage Jammer Output” on page 9-43
“Model Effect of Barrage Jammer on Target Echo” on page 9-45

Support for Modeling Barrage Jammer

The phased.BarrageJammer object models a broadband jammer. The output of
phased.BarrageJammer is a complex white Gaussian noise sequence. The modifiable
properties of the barrage jammer are:

• ERP — Effective radiated power in watts
• SamplesPerFrameSource — Source of number of samples per frame
• SamplesPerFrame — Number of samples per frame
• SeedSource — Source of seed for random number generator
• Seed — Seed for random number generator

The real and imaginary parts of the complex white Gaussian noise sequence each have
variance equal to 1/2 the effective radiated power in watts. Denote the effective radiated
power in watts by P. The barrage jammer output is:

w n x n j y nP P[] [] []= +
2 2

In this equation, x[n] and y[n] are uncorrelated sequences of zero-mean Gaussian
random variables with unit variance.

Model Barrage Jammer Output

This example examines the statistical properties of the barrage jammer output and
how they relate to the effective radiated power (ERP). Create a barrage jammer using
an effective radiated power of 5000 watts. Generate output at 500 samples per frame.
Then call the step function once to generate a single frame of complex data. Using
the histogram function, show the distribution of barrage jammer output values. The

9 Environment and Target Models

9-44

BarrageJammer System object uses a random number generator. In this example, the
random number generator seed is fixed for illustrative purposes and can be removed.

rng default

sJam = phased.BarrageJammer('ERP',5000,...

 'SamplesPerFrame',500);

y = step(sJam);

subplot(2,1,1)

histogram(real(y))

title('Histogram of Real Part')

subplot(2,1,2)

histogram(imag(y))

title('Histogram of Imaginary Part')

xlabel('Watts')

 Barrage Jammer

9-45

The mean values of the real and imaginary parts are

mean(real(y))

mean(imag(y))

ans =

 -1.0961

ans =

 -2.1671

which are effectively zero. The standard deviations of the real and imaginary parts are

std(real(y))

std(imag(y))

ans =

 50.1950

ans =

 49.7448

which agree with the predicted value of .

Model Effect of Barrage Jammer on Target Echo

This example demonstrates how to simulate the effect of a barrage jammer on a target
echo.

First, create the required objects. You need an array, a transmitter, a radiator, a target,
a jammer, a collector, and a receiver. Additionally, you need to define two propagation
paths: one from the array to the target and back, and the other path from the jammer to
the array.

9 Environment and Target Models

9-46

hula = phased.ULA(4);

Fs = 1e6;

fc = 1e9;

hwav = phased.RectangularWaveform('PulseWidth',100e-6,...

 'PRF',1e3,'NumPulses',5,'SampleRate',Fs);

htx = phased.Transmitter('PeakPower',1e4,'Gain',20,...

 'InUseOutputPort',true);

hrad = phased.Radiator('Sensor',hula,'OperatingFrequency',fc);

hjammer = phased.BarrageJammer('ERP',1000,...

 'SamplesPerFrame',hwav.NumPulses*hwav.SampleRate/hwav.PRF);

htarget = phased.RadarTarget('Model','Nonfluctuating',...

 'MeanRCS',1,'OperatingFrequency',fc);

htargetpath = phased.FreeSpace('TwoWayPropagation',true,...

 'SampleRate',Fs,'OperatingFrequency', fc);

hjammerpath = phased.FreeSpace('TwoWayPropagation',false,...

 'SampleRate',Fs,'OperatingFrequency', fc);

hcollector = phased.Collector('Sensor',hula,...

 'OperatingFrequency',fc);

hrc = phased.ReceiverPreamp('EnableInputPort',true);

Assume that the array, target, and jammer are stationary. The array is located at the
global origin, [0;0;0]. The target is located at [1000 ;500;0], and the jammer is
located at [2000;2000;100]. Determine the directions from the array to the target and
jammer.

targetloc = [1000 ; 500; 0];

jammerloc = [2000; 2000; 100];

[~,tgtang] = rangeangle(targetloc);

[~,jamang] = rangeangle(jammerloc);

Finally, transmit the rectangular pulse waveform to the target, reflect it off the target,
and collect the echo at the array. Simultaneously, the jammer transmits a jamming
signal toward the array. The jamming signal and echo are mixed at the receiver.

% Generate waveform

wf = step(hwav);

% Transmit waveform

[wf,txstatus] = step(htx,wf);

% Radiate pulse toward the target

wf = step(hrad,wf,tgtang);

% Propagate pulse toward the target

wf = step(htargetpath,wf,[0;0;0],targetloc,[0;0;0],[0;0;0]);

% Reflect it off the target

wf = step(htarget,wf);

 Barrage Jammer

9-47

% Collect the echo

wf = step(hcollector,wf,tgtang);

% Generate the jamming signal

jamsig = step(hjammer);

% Propagate the jamming signal to the array

jamsig = step(hjammerpath,jamsig,jammerloc,[0;0;0],...

 [0;0;0],[0;0;0]);

% Collect the jamming signal

jamsig = step(hcollector,jamsig,jamang);

% Receive target echo alone and target echo + jamming signal

pulsewave = step(hrc, wf,~txstatus);

pulsewave_jamsig = step(hrc,wf+jamsig,~txstatus);

Plot the result, and compare it with received waveform with and without jamming.

subplot(2,1,1);

t = unigrid(0,1/Fs,size(pulsewave,1)*1/Fs,'[)');

plot(t,abs(pulsewave(:,1)));

title('Magnitudes of Pulse Waveform Without Jamming--Element 1')

ylabel('Magnitude');

subplot(2,1,2);

plot(t,abs(pulsewave_jamsig(:,1)));

title('Magnitudes of Pulse Waveform with Jamming--Element 1')

xlabel('Seconds'); ylabel('Magnitude');

10

Coordinate Systems and Motion
Modeling

• “Rectangular Coordinates” on page 10-2
• “Spherical Coordinates” on page 10-13
• “Global and Local Coordinate Systems” on page 10-21
• “Global and Local Coordinate Systems Radar Example” on page 10-42
• “Motion Modeling in Phased Array Systems” on page 10-52
• “Model Motion of Circling Airplane” on page 10-57
• “Doppler Shift and Pulse-Doppler Processing” on page 10-60

10 Coordinate Systems and Motion Modeling

10-2

Rectangular Coordinates

In this section...

“Definitions of Coordinates” on page 10-2
“Notation for Vectors and Points” on page 10-4
“Orthogonal Basis and Euclidean Norm” on page 10-4
“Orientation of Coordinate Axes” on page 10-4
“Rotations and Rotation Matrices” on page 10-5

Definitions of Coordinates

Construct a rectangular, or Cartesian, coordinate system for three-dimensional space
by specifying three mutually orthogonal coordinate axes. The following figure shows one
possible specification of the coordinate axes.

 Rectangular Coordinates

10-3

Rectangular coordinates specify a position in space in a given coordinate system as an
ordered 3-tuple of real numbers, (x,y,z), with respect to the origin (0,0,0). Considerations
for choosing the origin are discussed in “Global and Local Coordinate Systems” on page
10-21.

You can view the 3-tuple as a point in space, or equivalently as a vector in three-
dimensional Euclidean space. Viewed as a vector space, the coordinate axes are basis
vectors and the vector gives the direction to a point in space from the origin. Every vector
in space is uniquely determined by a linear combination of the basis vectors. The most
common set of basis vectors for three-dimensional Euclidean space are the standard unit
basis vectors:

10 Coordinate Systems and Motion Modeling

10-4

{[],[],[]}1 0 0 0 1 0 0 0 1

Notation for Vectors and Points

In Phased Array System Toolbox software, you specify both coordinate axes and points as
column vectors.

Note: In this software, all coordinate vectors are column vectors. For convenience,
the documentation represents column vectors in the format [x y z] without transpose
notation.

Both the vector notation [x y z] and point notation (x,y,z) are used interchangeably. The
interpretation of the column vector as a vector or point depends on the context. If the
column vector specifies the axes of a coordinate system or direction, it is a vector. If the
column vector specifies coordinates, it is a point.

Orthogonal Basis and Euclidean Norm

Any three linearly independent vectors define a basis for three-dimensional space.
However, this software assumes that the basis vectors you use are orthogonal.

The standard distance measure in space is the l2 norm, or Euclidean norm. The
Euclidean norm of a vector [x y z] is defined by:

x y z
2 2 2

+ +

The Euclidean norm gives the length of the vector measured from the origin as the
hypotenuse of a right triangle. The distance between two vectors [x0 y0 z0] and [x1 y1 z1] is:

() () ()x x y y z z0 1
2

0 1
2

0 1
2

- + - + -

Orientation of Coordinate Axes

Given an orthonormal set of basis vectors representing the coordinate axes, there are
multiple ways to orient the axes. The following figure illustrates one such orientation,
called a right-handed coordinate system. The arrows on the coordinate axes indicate the
positive directions.

 Rectangular Coordinates

10-5

If you take your right hand and point it along the positive x-axis with your palm facing
the positive y-axis and extend your thumb, your thumb indicates the positive direction of
the z-axis.

Rotations and Rotation Matrices

In transforming vectors in three-dimensional space, rotation matrices are often
encountered. Rotation matrices are used in two senses: they can be used to rotate a
vector into a new position or they can be used to rotate a coordinate basis (or coordinate
system) into a new one. In this case, the vector is left alone but its components in the
new basis will be different from those in the original basis. In Euclidean space, there

10 Coordinate Systems and Motion Modeling

10-6

are three basic rotations: one each around the x, y and z axes. Each rotation is specified
by an angle of rotation. The rotation angle is defined to be positive for a rotation that is
counterclockwise when viewed by an observer looking along the rotation axis towards the
origin. Any arbitrary rotation can be composed of a combination of these three (Euler’s
rotation theorem). For example, one can rotated a vector using a sequence of three
rotations: ¢ = =v v vA R R Rz y x() () ()g b a .

The rotation matrices that rotate a vector around the x, y, and z-axes are given by:

• Counterclockwise rotation around x-axis

R
x
() cos sin

sin cos

a a a

a a

= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0

0

• Counterclockwise rotation around y-axis

Ry ()

cos sin

sin cos

b

b b

b b

=

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0 1 0

0

• Counterclockwise rotation around z-axis

R
z
()

cos sin

sin cosg

g g

g g=

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0

0 0 1

The following three figures show what positive rotations look like for each rotation axis:

 Rectangular Coordinates

10-7

10 Coordinate Systems and Motion Modeling

10-8

 Rectangular Coordinates

10-9

For any rotation, there is an inverse rotation satisfying A A
-

=
1

1 . For example, the
inverse of the x-axis rotation matrix is obtained by changing the sign of the angle:

R R R
x x x

- ¢= - =

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=1

1 0 0

0

0

() () cos sin

sin cos

()a a a a

a a

a

This example illustrates a basic property: the inverse rotation matrix equals the
transpose of the original. Rotation matrices satisfy A’A = 1, and consequently det(A) = 1.
Under rotations, vector lengths are preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors,
i j k, , , and rotate them all using the rotation matrix A. This produces a new set of basis

vectors i j k¢ ¢ ¢
, , related to the original by:

10 Coordinate Systems and Motion Modeling

10-10

¢ =

¢ =

¢ =

i i

j j

k k

A

A

A

The new basis vectors can be written as linear combinations of the old ones and involve
the transpose:

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

i

j

k

i

j

k

A

Now any vector can be written as a linear combination of either set of basis vectors:

v i j k i j k= + + = ¢ ¢+ ¢ ¢ + ¢ ¢v v v v v vx y z x y z

Using some algebraic manipulation, one can derive the transformation of components for
a fixed vector when the basis (or coordinate system) rotates

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

v

v

v

A

v

v

v

A

v

v

v

x

y

z

x

y

z

x

y

z

1

Thus the change in components of a vector when the coordinate system rotates involves
the transpose of the rotation matrix. The next figure illustrates how a vector stays fixed
as the coordinate system rotates around the x-axis. The figure after shows how this can
be interpreted as a rotation of the vector in the opposite direction.

 Rectangular Coordinates

10-11

10 Coordinate Systems and Motion Modeling

10-12

More About
• “Global and Local Coordinate Systems” on page 10-21

 Spherical Coordinates

10-13

Spherical Coordinates

In this section...

“Support for Spherical Coordinates” on page 10-13
“Azimuth and Elevation Angles” on page 10-13
“Phi and Theta Angles” on page 10-14
“U and V Coordinates” on page 10-15
“Conversion from Rectangular and Spherical Coordinates” on page 10-16
“Broadside Angle” on page 10-17

Support for Spherical Coordinates

Spherical coordinates describe a vector or point in space with a distance and two angles.
The distance, R, is the usual Euclidean norm. There are multiple conventions regarding
the specification of the two angles. They include:

• Azimuth and elevation angles
• Phi and theta angles
• u and v coordinates

Phased Array System Toolbox software natively supports the azimuth/elevation
representation. The software also provides functions for converting between the azimuth/
elevation representation and the other representations. See “Phi and Theta Angles” on
page 10-14 and “U and V Coordinates” on page 10-15.

Azimuth and Elevation Angles

In Phased Array System Toolbox software, the predominant convention for spherical
coordinates is as follows:

• Use the azimuth angle, az, and the elevation angle, el, to define the location of a point
on the unit sphere.

• Specify all angles in degrees.
• List coordinates in the sequence (az,el,R).

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and

10 Coordinate Systems and Motion Modeling

10-14

180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

Phi and Theta Angles

As an alternative to azimuth and elevation angles, you can use angles denoted by φ and θ
to express the location of a point on the unit sphere. To convert the φ/θ representation to
and from the corresponding azimuth/elevation representation, use coordinate conversion
functions, phitheta2azel and azel2phitheta.

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

 Spherical Coordinates

10-15

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

U and V Coordinates

In radar applications, it is often useful to parameterize the hemisphere x ≥ 0 using
coordinates denoted by u and v.

• To convert the φ/θ representation to and from the corresponding u/v representation,
use coordinate conversion functions phitheta2uv and uv2phitheta.

• To convert the azimuth/elevation representation to and from the corresponding u/v
representation, use coordinate conversion functions azel2uv and uv2azel.

You can define u and v in terms of φ and θ:

10 Coordinate Systems and Motion Modeling

10-16

u

v

=

=

sin cos

sin sin

q f

q f

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u el az

v el

=

=

cos sin

sin

The values of u and v satisfy the inequalities

- £ £

- £ £

+ £

1 1

1 1

1
2 2

u

v

u v

Conversely, the phi and theta angles can be written in terms of u and v using

tan /

sin

f

q

=

= +

u v

u v
2 2

The azimuth and elevation angles can also be written in terms of u and v

sin

tan

el v

az
u

u v

=

=

- -1
2 2

Conversion from Rectangular and Spherical Coordinates

The following equations define the relationships between rectangular coordinates and the
(az,el,R) representation used in Phased Array System Toolbox software.

To convert rectangular coordinates to (az,el,R):

R x y z

az y x

el z x y

= + +

=

= +

-

-

2 2 2

1

1 2 2

tan (/)

tan (/)

 Spherical Coordinates

10-17

To convert (az,el,R) to rectangular coordinates:

x R el az

y R el az

z R el

=

=

=

cos()cos()

cos()sin()

sin()

When specifying a target’s location with respect to a phased array, it is common to refer
to its distance and direction from the array. The distance from the array corresponds to R
in spherical coordinates. The direction corresponds to the azimuth and elevation angles.

Tip To convert between rectangular coordinates and (az,el,R), use the MATLAB functions
cart2sph and sph2cart. These functions specify angles in radians. To convert between
degrees and radians, use degtorad and radtodeg.

Broadside Angle

The special case of the uniform linear arrays (ULA) uses the concept of the broadside
angle. The broadside angle is the angle measured from array normal direction projected
onto the plane determined by the signal incident direction and the array axis to the
signal incident direction. Broadside angles assume values in the interval [–90,90]
degrees. The following figure illustrates the definition of the broadside angle.

The shaded gray area in the figure is the plane determined by the signal incident
direction and the array axis. The broadside angle is positive when measured toward the

10 Coordinate Systems and Motion Modeling

10-18

positive direction of the array axis. A number of algorithms for ULA’s use the broadside
angle instead of the azimuth and elevation angles. The algorithms do so because the
broadside angle more accurately describes the ability to discern direction of arrival with
this geometry.

Phased Array System Toolbox software provides functions az2broadside and
broadside2az for converting between azimuth and broadside angles. The following
equation determines the broadside angle, β, from the azimuth and elevation angles, az
and el:

b = -
sin (sin()cos())

1
az el

Expressing the broadside angle in terms of the azimuth and elevation angles reveals a
number of important characteristics, including:

• For an elevation angle of zero degrees, the broadside angle is equal to the azimuth
angle.

• Elevation angles equally above and below the xy plane result in identical broadside
angles.

The following figure depicts a ULA with elements spaced d meters apart. The ULA is
illuminated by a plane wave emitted from a point source in the far field. For convenience,
the elevation angle is zero degrees. The plane determined by the signal incident direction
and the array axis is the xy plane. The broadside angle reduces to the azimuth angle.

 Spherical Coordinates

10-19

Source

1

d

d sin(β)

2 3 4 5

β

Because of the angle of arrival, the array elements are not simultaneously illuminated
by the plane wave. The additional distance the incident wave travels between array
elements is d sin(β) where d is the distance between array elements. Therefore, the
constant time delay between array elements is:

t
b

=
d

c

sin()
,

where c is the speed of the wave.

For broadside angles of ±90 degrees, the plane wave is incident on the array along the
array axis and the time delay between sensors reduces to ±d/c. For a broadside angle of 0
degrees, the plane wave illuminates all elements of the ULA simultaneously and the time
delay between elements is zero.

The following examples show the use of the utility functions az2broadside and
broadside2az:

A target is located at an azimuth angle of 45 degrees and elevation angle of 60 degrees
relative to a ULA. Determine the corresponding broadside angle:

bsang = az2broadside(45,60)

% approximately 21 degrees

10 Coordinate Systems and Motion Modeling

10-20

Calculate the azimuth corresponding to a broadside angle of 45 degrees and an elevation
of 20 degrees:

az = broadside2az(45,20)

% approximately 49 degrees

 Global and Local Coordinate Systems

10-21

Global and Local Coordinate Systems

In this section...

“Global Coordinate System” on page 10-21
“Local Coordinate Systems” on page 10-21
“Converting Between Global and Local Coordinate Systems” on page 10-40

Global Coordinate System

The global coordinate system describes the arena in which your radar or sonar
simulation takes place. Within this arena, you can place radar or sonar transmitters and
receivers, and targets. These objects can be either stationary and moving. You specify the
location and motion of these objects in global coordinates.

You can model the motion of all objects using the phased.Platform System object. This
System object computes the position and speed of objects using constant-velocity or
constant-acceleration models.

You can model the signals that propagate between objects in your scenario. The
ray paths that connect transmitters, targets, and receivers are specified in global
coordinates. You can propagate signals using these System objects: phased.FreeSpace,
WidebandFreeSpace, phased.LOSChannel, or phased.WidebandLOSChannel. If you
model two-ray multipath propagation using the phased.TwoRayChannel System object,
the boundary plane is set at z = 0 in the global coordinate system.

Local Coordinate Systems

When signals interact with sensors or targets, the interaction is almost always specified
as a function of the sensor or target local coordinates. Local coordinate systems are fixed
to the antennas and microphones, phased arrays, and targets. They move and rotate with
the object. Local coordinates are commonly adapted to the shape and symmetry of the
object.

Because signals propagate in the global coordinate system, you need to be able to
convert local coordinates to the global coordinates. You do this by constructing a 3-
by-3 orthonormal matrix of coordinate axes. The matrix columns represent the three

10 Coordinate Systems and Motion Modeling

10-22

orthogonal direction vectors of the local coordinates expressed in the global coordinate
system. The coordinate axes of a local coordinate system must be orthonormal, but they
need not be parallel to the global coordinate axes.

When you need to compute the range and arrival angles of a signal, you can use the
rangeangle function. When you call this function with the source and receiver position
expressed in global coordinates, the function returns the range and arrival angles,
azimuth and elevation, with respect to the axes of the global system. However, when you
pass the orientation matrix as an additional argument, the azimuth and elevation are
now defined with respect to the local coordinate system.

You use local coordinates to specify

• the location and orientation of antenna or microphone elements of an array. The beam
pattern of an antenna array depends upon the angle of arrival or emission of radiation
with respect to the array local coordinates.

• the reflected energy from a target is a function of the incident and reflection angles
with respect to the target local coordinate axes.

Two examples of local coordinate systems are

• an airplane may have a local coordinate system with the x-axis aligned along the
fusilage axis of the body and the y-axis pointing along the port wing. Choose the z-axis
to form a right-handed coordinate system.

• a vehicle-mounted planar phased array may have a local coordinate system adapted
to the array. The x-axis of the coordinate system may point along the array normal
vector

The following figure illustrates the relationship of local and global coordinate systems
in a bistatic radar scenario. The thick solid lines represent the coordinate axes of the
global coordinate system. There are two phased arrays: a 5-by-5 transmitting uniform
rectangular array (URA) and 5-by-5 receiving URA. Each of the phased arrays carries its
own local coordinate system. The target, indicated by the red arrow, also carries a local
coordinate system.

 Global and Local Coordinate Systems

10-23

The next few sections review the local coordinate systems used by arrays.

Local Coordinate Systems of Arrays

The positions of the elements of any Phased Array System Toolbox array are always
defined in a local coordinate system. When you use any of the System objects that
create uniform arrays, the array element positions are defined automatically with
respect to a predefined local coordinate system. The arrays for which this property
holds are the phased.ULA, phased.URA, phased.UCA, phased.HeterogeneousULA, and
phased.HeterogeneousURA System objects. For these System objects, the arrays are
described using a few parameters such as element spacing and number of elements.
The positions of the elements are then defined with respect to the array origin located
at (0,0,0) which is the geometric center of the array. The geometric center is a good
approximation to the array phase center. The phase center of an array is the point
from which the radiating waves appear to emanate when observed in the far field.
For example, for a ULA with an odd number of elements, the elements are located at
distances (-2d,-d,0,d,2d) along the array axis.

There are array System objects for which you must explicitly specify the element
coordinates. You can use these objects for creating arbitrary array shapes. These objects
are thephased.ConformalArray and phased.HeterogeneousConformalArray System

10 Coordinate Systems and Motion Modeling

10-24

objects. For these arrays, the phase center of the array need not coincide with the array
origin or geometric center.

Element Boresight Directions

In addition to element positions, you need to specify the element orientations, that is,
the direction in which the elements point. Some elements are highly directional — most
of their radiated energy flows in one direction, called the main response axis (MRA).
Others are omnidirectional. Element orientation is the pointing direction of the MRA.
You specify element orientation using azimuth and elevation in the array local coordinate
system. The direction that an antenna or microphone MRA faces when transmitting or
receiving a signal is also called the boresight or look direction. For the uniform arrays, all
boresight directions of all elements are determined by array parameters. For conformal
arrays, you specify the boresight direction of each element independently.

Local Coordinate System of Uniform Linear Array

Array Origin and Phase Center

A uniform linear array (ULA) is an array of antenna or microphone elements that are
equidistantly spaced along a straight line. In the Phased Array System Toolbox, the
phased.ULA System object creates a ULA array. The geometry of the ULA orientation of
its elements are determined by three parameters: the number of elements, the distance
between elements, and the ArrayAxis property. For the ULA, the local coordinate
system is adapted to the array — the elements are automatically assigned positions in
the local coordinate system.

The positions of elements in the array are determined by the ArrayAxis property which
can take the values 'x', 'y' or 'z'. The array axis property determines the axis on
which all elements are defined. For example, when the ArrayAxis property is set to 'x',
the array elements lie along the x-axis. The elements are position symmetrically with
respect to the origin. Therefore, the geometric center of the array lies at the origin of the
coordinate system.

This figure shows a four-element ULA with directional elements in a local right-handed
coordinate system. The elements lie on the y-axis with their boresight axes pointing in
the x-direction. In this case, the ArrayAxis property is set to 'y.

 Global and Local Coordinate Systems

10-25

ULA Element Boresight Direction

In a ULA, the boresight directions of every element point in the same direction. The
direction is orthogonal to the array axis. This direction depends upon the choice of
ArrayAxis property.

ArrayAxis Property Value Element Positions and Boresight Directions

'x' Array elements lie on the x-axis. Element
boresight vectors point along the y-axis.

'y' Array elements lie on the y-axis. Element
boresight vectors point along the x-axis.

'z' Array elements lie on the z-axis. Element
boresight vectors point along the x-axis.

10 Coordinate Systems and Motion Modeling

10-26

Local Coordinates Adapted to Uniform Linear Array

Construct two examples of a uniform linear array and display the coordinates of the
elements with respect to the local coordinate systems defined by the arrays.

First, construct a 4-element ULA with one-half meter element spacing.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);

ElementLocs = getElementPosition(sULA)

viewArray(sULA)

ElementLocs =

 0 0 0 0

 -0.7500 -0.2500 0.2500 0.7500

 0 0 0 0

 Global and Local Coordinate Systems

10-27

The origin of the array-centric local coordinate system is set to the phase center of the
array. The phase center is the average value of the array element positions.

disp(mean(ElementLocs'))

 0 0 0

Because the array has an even number of elements, no element of the array actually lies
at the phase center (0,0,0).

Next construct a 5-element ULA with thirty-centimeter element spacing.

sULA1 = phased.ULA('NumElements',5,'ElementSpacing',0.3);

10 Coordinate Systems and Motion Modeling

10-28

ElementLocs = getElementPosition(sULA1)

viewArray(sULA1)

ElementLocs =

 0 0 0 0 0

 -0.6000 -0.3000 0 0.3000 0.6000

 0 0 0 0 0

 Global and Local Coordinate Systems

10-29

Because the array has an odd number of elements in each row and column, the center
element of the array lies at the phase center.

Local Coordinate System of Uniform Rectangular Array

Array Origin and Phase Center

A uniform rectangular array (URA) is an array of antenna or microphone elements
placed on a regular two-dimensional grid. The geometry of a URA and the location and
orientation of its elements are determined by several parameters: the dimensions of the
array, the distance between elements, and the ArrayNormal property. For the URA,
the local coordinate system is adapted to the array — the elements are automatically
assigned positions in the local coordinate system. The origin of the local coordinate
system is the geometric center of the array. The phase center of the array coincides
with the geometric center. The elements are automatically assigned positions in this
local coordinate system. The positions are determined by the ArrayNormal property
which can take the values 'x', 'y' or 'z'. All elements lie in a plane passing through
the origin and orthogonal to the axis specified in this property. For example, when the
ArrayNormal property is set to 'x', the array elements lie in the yz-plane as shown in
the figure. The figure shows a 2-by-4 element URA with elements spaced d meters apart
in both the y and z directions.

10 Coordinate Systems and Motion Modeling

10-30

Element Boresight Direction

In a URA, like the ULA, THE boresight directions of every element point in the same
direction. You control this direction using the ArrayNormal property. For the URA
shown in the preceding figure, the ArrayNormal property is set to 'x'. Then, element
boresights point along the x-axis.

 Global and Local Coordinate Systems

10-31

ArrayNormal Property Value Element Positions and Boresight Directions

'x' Array elements lie on the yz-plane.
Element boresight vectors point along the
x-axis.

'y' Array elements lie on the zx-plane.
Element boresight vectors point along the
y-axis.

'z' Array elements lie on the xy-plane.
Element boresight vectors point along the
z-axis.

Local Coordinates Adapted to Uniform Rectangular Array

Construct two examples of uniform rectangular arrays and display the coordinates of the
elements with respect to the local coordinate systems defined by the arrays.

First, construct a 2-by-4 URA with one-half meter element spacing.

sURA = phased.URA('Size',[2 4],'ElementSpacing',[0.5 0.5]);

ElementLocs = getElementPosition(sURA)

viewArray(sURA)

ElementLocs =

 Columns 1 through 7

 0 0 0 0 0 0 0

 -0.7500 -0.7500 -0.2500 -0.2500 0.2500 0.2500 0.7500

 0.2500 -0.2500 0.2500 -0.2500 0.2500 -0.2500 0.2500

 Column 8

 0

 0.7500

 -0.2500

10 Coordinate Systems and Motion Modeling

10-32

The phase center of the array is the mean value of the array element positions. The
origin of the array local coordinate system is set to the phase center of the array.

disp(mean(ElementLocs'))

 0 0 0

Because the array has an even number of elements in each row and column, no element
of the array actually lies at the phase center (0,0,0).

Next construct a 5-by-3 URA with thirty-centimeter element spacing.

sURA1 = phased.URA([5 3],'ElementSpacing',[0.3 0.3]);

 Global and Local Coordinate Systems

10-33

ElementLocs = getElementPosition(sURA1)

viewArray(sURA1)

ElementLocs =

 Columns 1 through 7

 0 0 0 0 0 0 0

 -0.3000 -0.3000 -0.3000 -0.3000 -0.3000 0 0

 0.6000 0.3000 0 -0.3000 -0.6000 0.6000 0.3000

 Columns 8 through 14

 0 0 0 0 0 0 0

 0 0 0 0.3000 0.3000 0.3000 0.3000

 0 -0.3000 -0.6000 0.6000 0.3000 0 -0.3000

 Column 15

 0

 0.3000

 -0.6000

10 Coordinate Systems and Motion Modeling

10-34

Because the array has an odd number of elements in each row and column, the center
element of the array lies at the phase center.

A signal arrives at the array from a point 1000 meters from along the +x-axis of the
global coordinate system. The local URA array is rotated 30 degrees clockwise around the
y-axis. Compute the angle of arrival of the signal in the local array axes.

laxes = roty(30);

[rng,ang] = rangeangle([1000,0,0]',[0,0,0]',laxes)

rng =

 1000

 Global and Local Coordinate Systems

10-35

ang =

 0

 30.0000

Local Coordinate System of Uniform Circular Array

Array Origin and Phase Center

A uniform circular array (UCA) is an array of antenna or microphone elements spaced
at equal angles around a circle. The phased.UCA System object creates a special case of
a UCA. In this case, element boresight directions point away from the array origin like
spokes of a wheel. The origin of the local coordinate system is the geometric center of
the array. The geometry of the UCA and the location and orientation of its elements is
determined by three parameters: the radius of the array, the number of elements, and
the ArrayNormal property. The elements are automatically assigned positions in the
local coordinate system. The positions are determined by the ArrayNormal property
which can take the values 'x', 'y' or 'z'. All elements lie in a plane passing through
the origin and orthogonal to the axis specified in this property. The phase center of
the array coincides with the geometric center. For example, when the ArrayNormal
property is set to 'x', the array elements lie in the yz-plane as shown in the figure.
you can create a more general UCA with arbitrary boresight directions using the
phased.ConformalArray System object.)

This figure shows an 8-element UCA with elements lying in the yz plane.

10 Coordinate Systems and Motion Modeling

10-36

Element Boresight Directions

In a UCA defined by a phased.UCA System object, element boresight directions point
radially outward from the array origin. In the UCA shown in the preceding figure,
because the ArrayNormal property is set to 'x', the element boresight directions point
radially outward in the yz-plane.

 Global and Local Coordinate Systems

10-37

ArrayNormal Property Value Element Positions and Boresight Directions

'x' Array elements lie on the yz-plane. All
element boresight vectors lie in the yz-
plane and point radially-outward from the
origin.

'y' Array elements lie on the zx-plane. All
element boresight vectors lie in the zx-
plane and point radially-outward from the
origin.

'z' Array elements lie on the xy-plane. All
element boresight vectors lie in the xy-
plane and point radially-outward from the
origin.

Local Coordinate System of Conformal Arrays

Array Origin and Phase Center

You can use phased.ConformalArray to create arrays of arbitrary shape. Unlike the case
of uniform arrays, you must specify the element positions explicitly. An N-element array
requires the specification of N 3-D coordinates in the array local coordinate system. The
origin of a conformal array can be located at any arbitrary point. The boresight directions
of the elements of a conformal array need not be parallel. The azimuth and elevation
angles defining the boresight directions are with respect to the local coordinate system.
The phase center of the array does not need to coincide with the geometric center. The
same properties apply to the phased.HeterogeneousConformalArray array.

This illustration shows the positions and orientations of a 4-element conformal array.

10 Coordinate Systems and Motion Modeling

10-38

4-Element Conformal Array

Construct a 4-element array using the ConformalArray System object. Assume the
operating frequency is 900 MHz. Display the array geometry and normal vectors.

fc = 900e6;

c = physconst('LightSpeed');

lam = c/fc;

x = [1.0,-.5,0,.8]*lam/2;

y = [-.4,-1,.5,1.5]*lam/2;

z = [-.3,.3,0.4,0]*lam/2;

sIso = phased.CosineAntennaElement(...

 'FrequencyRange',[0,1e9]);

nv = [-140,-140,90,90;80,80,80,80];

 Global and Local Coordinate Systems

10-39

sConformArray = phased.ConformalArray('Element',sIso,...

 'ElementPosition',[x;y;z],...

 'ElementNormal',nv);

pos = getElementPosition(sConformArray)

normvec = getElementNormal(sConformArray)

viewArray(sConformArray,'ShowIndex','All','ShowNormal',true)

pos =

 0.1666 -0.0833 0 0.1332

 -0.0666 -0.1666 0.0833 0.2498

 -0.0500 0.0500 0.0666 0

normvec =

 -140 -140 90 90

 80 80 80 80

10 Coordinate Systems and Motion Modeling

10-40

Converting Between Global and Local Coordinate Systems

In many array processing applications, it is necessary to convert between global and local
coordinates. Two utility functions, global2localcoord and local2globalcoord,
enable you to do this conversion.

Convert Local Spherical Coordinates to Global Rectangular Coordinates

Assume a stationary target 1000 meters from a URA at an azimuth angle of 30 degrees
and elevation angle of 45 degrees. The phase center of the URA is located at the
rectangular coordinates [1000 500 100] in the global coordinate system. The local
coordinate axes of the URA are parallel to the global coordinate axes. Determine the
position of the target in rectangular coordinates in the global coordinate system.

 Global and Local Coordinate Systems

10-41

In this example, the target’s location is specified in local spherical coordinates. The
target is 1000 meters from the array, which means that R=1000. The azimuth angle of 30
degrees and elevation angle of 45 degrees give the direction of the target from the array.
The spherical coordinates of the target in the local coordinate system are (30,45,1000).
To convert to global rectangular coordinates, you must know the position of the array in
global coordinates. The phase center of the array is located at [1000 500 100]. To convert
from local spherical coordinates to global rectangular coordinates, use the 'sr' option.

gCoord = local2globalcoord([30; 45; 1000],'sr',...

 [1000; 500; 100]);

Convert Global Rectangular Coordinates to Local Spherical Coordinates

Assume a stationary target with global rectangular coordinates (5000,3000 ,50). The
phase center of a URA has global rectangular coordinates (1000,500,10). The local
coordinate axes of the URA are (0,1,0), (1,0,0), and (0,0,–1). Determine the position of the
target in local spherical coordinates.

lCoord = global2localcoord([5000; 3000; 50],'rs',...

 [1000; 500; 10],[0 1 0;1 0 0;0 0 -1]);

The output lCoord takes the form (az,el,R). The target in local coordinates has an
azimuth of approximately 58 degrees, an elevation of 0.5 degrees, and a range of 4717.16
m.

10 Coordinate Systems and Motion Modeling

10-42

Global and Local Coordinate Systems Radar Example

This example shows how several different coordinate systems come into play when
modeling a typical radar scenario. The scenario considered here is a bistatic radar system
consisting of a transmitting radar array, a target, and a receiving radar array. The
transmitting radar antenna emits radar signals that propagate to the target, reflected off
the target, and then propagate to the receiving radar.

Choose a signal frequency of 1 GHz.

fc = 1e9;

c = physconst('LightSpeed');

lam = c/fc;

Create All Radar System Components

First, set up the transmitting radar array. The transmitting array is a 5-by-5 uniform
rectangular array (URA) composed of isotropic antenna elements. The array is stationary
and is located at the position (50,50,50) meters in the global coordinate system. Although
you position arrays in the global system, array element positions are always defined in
the array local coordinate system. The tranmitted signal strength in any direction is
a function of the transmitting angle in the local array coordinate system. Specify the
orientation of the array. Without any orientation, local array axes are aligned with the
global coordinate system. Choose an array orientation so that the array normal vector
points approximately in the direction of the target. Do this by rotating the array 90°
around the z-axis. Then, rotate the array slightly by 2° around the y-axis and 1° around
the z-axis again.

sAnt = phased.IsotropicAntennaElement('BackBaffled',false);

stxURA = phased.URA('Element',sAnt','Size',[5,5],'ElementSpacing',0.4*lam*[1,1]);

txradarAx = rotz(1)*roty(2)*rotz(90);

sTxRadar = phased.Platform('InitialPosition',[50;50;50],...

 'Velocity',[0;0;0],'InitialOrientationAxes',txradarAx,...

 'OrientationAxesOutputPort',true);

sRad = phased.Radiator('Sensor',stxURA,'PropagationSpeed',c,...

 'WeightsInputPort',true,'OperatingFrequency',fc);

sSV = phased.SteeringVector('SensorArray',stxURA,'PropagationSpeed',c,...

 'IncludeElementResponse',true);

Next, position a target approximately 5 km from the transmitter along the global
coordinate system y-axis and moving in the x-direction. Typically, you specify radar cross-
section values as functions of the incident and reflected ray angles with respect to the

 Global and Local Coordinate Systems Radar Example

10-43

local target axes. Choose any target orientation with respect to the global coordinate
system.

Simulate a non-fluctuating target, but allow the RCS to change at each call to the step
method. Set up a simple inline function, rcsval, to compute ficticious but reasonable
values for RCS at different ray angles.

tgtAx = rotz(10)*roty(15)*rotx(20);

sTarget = phased.Platform('InitialPosition',[100; 10000; 100],...

 'MotionModel','Acceleration','InitialVelocity',[-20;0;0],'Acceleration',[.015;.015;0],...

 'InitialOrientationAxes',tgtAx,'OrientationAxesOutputPort',true);

sTgt = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',fc,...

 'Model','Nonfluctuating','MeanRCSSource','Input port');

rcsval = @(az1,el1,az2,el2) 2*abs(cosd((az1+az2)/2 - 90)*cosd((el1+el2)/2));

Finally, set up the receiving radar array. The receiving array is also a 5-by-5 URA
composed of isotropic antenna elements. The array is stationary and is located 150
meters in the z-direction from the transmitting array. The received signal strength in
any direction is a function of the incident angle of the signal in the local array coordinate
system. Specify an orientation of the array. Choose an orientation so that this array also
points approximately in the y-direction towards the target but not quite aligned with the
first array. Do this by rotating the array 92° around the z-axis and then 5° around the x-
axis.

rxradarAx = rotx(5)*rotz(92);

sRxRadar = phased.Platform('InitialPosition',[50;50;200],...

 'Velocity',[0;0;0],'InitialOrientationAxes',rxradarAx,...

 'OrientationAxesOutputPort',true);

srxURA = phased.URA('Element',sAnt','Size',[5,5],'ElementSpacing',0.4*lam*[1,1]);

In summary, four different coordinate systems are needed to describe the radar scenario.
These are

1 The global coordinate system.
2 A local radar coordinate system defined by the transmitting radar axes.
3 A local coordinate system defined by the target axes.
4 A second local radar coordinate system defined by the receiving radar axes.

The figure here illustrates the four coordinate systems. It is not to scale and does not
accurately represent the scenario in the example code.

10 Coordinate Systems and Motion Modeling

10-44

Specify Transmitted Waveform and Transmitter Amplification

Use a linear FM waveform as the transmitted signal. Assume a sampling frequency of 1
MHz, a pulse repetition frequency of 5 kHz, and a pulse length of 100 microseconds. Set
the transmitter peak output power to 1000 W and the gain to 40.0.

tau = 100e-6;

prf = 5000;

fs = 1e6;

sWav = phased.LinearFMWaveform('PulseWidth',tau,...

 'OutputFormat','Pulses','NumPulses',1,'PRF',prf,'SampleRate',fs);

sTransmit = phased.Transmitter('PeakPower',1000.0,'Gain',40);

Create a matched filter from the transmitted waveform.

sMF = phased.MatchedFilter('Coefficients',getMatchedFilter(sWav));

 Global and Local Coordinate Systems Radar Example

10-45

Specify Propagation Channels

Use free-space models for the propagation of the signal from the transmitting radar to
the target and back to the receiving radar.

sFS1 = phased.FreeSpace('OperatingFrequency',fc,...

 'TwoWayPropagation',false);

sFS2 = phased.FreeSpace('OperatingFrequency',fc,...

 'TwoWayPropagation',false);

Specify Phaseshift Beamformer

Create a phase-shift beamformer. Point the mainlobe of the beamformer in a specific
direction with respect to the local receiver coordinate system. This direction is chosen
to be one through which the target passes at some time in its motion. This choice lets
us demonstrate how the beamformer response changes as the target passes through the
mainlobe.

rxangsteer = [22.2244;-5.0615];

srxBF = phased.PhaseShiftBeamformer('SensorArray',srxURA,...

 'DirectionSource','Property','Direction',rxangsteer,...

 'PropagationSpeed',c,'OperatingFrequency',fc);

Simulation loop

Each iteration of the processing lool performs these operations:

1 Updates positions of the radars and target.
2 Generates the LFM waveform.
3 Amplifies the waveform.
4 Radiates the signal from the transmitting antenna array.
5 Propagates the signal to the target.
6 Reflects the signal from the target.
7 Propagates the signal from the target to the receiving antenna array.
8 Collects the received signal at the receiving antenna.
9 Beamforms the arriving signal at the receiving antenna.
10 Match-filters the beamformed signal and find its peak value.

Transmit 100 pulses of the waveform. Transmit one pulse every 100 milliseconds.

10 Coordinate Systems and Motion Modeling

10-46

rng default

t = 0;

Npulse = 100;

dt = 0.1;

Create storage for later plotting.

azes1 = zeros(Npulse,1);

elevs1 = zeros(Npulse,1);

azes2 = zeros(Npulse,1);

elevs2 = zeros(Npulse,1);

rxsig = zeros(Npulse,1);

Enter the simulation loop.

for k = 1:Npulse

 t = t + dt;

Generate the transmitted waveform.

 waveform = step(sWav);

First, update the positions of the radars and targets. All positions and
velocities are defined with respect to the global coordinate system. Because the
OrientationAxesOutputPort property of the target System object™ is set to true,
you can obtain the instantaneous local target axes, tgtAx1, from the step method.
These axes are needed to compute the target RCS. The array local axes are fixed so you
do not need to update them.

 [txradarPos,txradarVel] = step(sTxRadar,t);

 [rxradarPos,rxradarVel] = step(sRxRadar,t);

 [tgtPos,tgtVel,tgtAx1] = step(sTarget,t);

Compute the instantaneous range and direction of the target from the transmitting
radar. The strength of the transmitted wave depends upon the array gain pattern. This
pattern is a function of direction angles with respect to the local radar axes. You can
compute the direction of the target with respect to the transmitter local axes using the
rangeangle function with an optional argument that specifies the local radar axes,
txradarAx. (Without this additional argument, rangeangle returns the azimuth and
elevation angles with respect to the global coordinate system).

 [~,tgtang_tlcs] = rangeangle(tgtPos,txradarPos,txradarAx);

 Global and Local Coordinate Systems Radar Example

10-47

An alternative way to compute the direction angles is to first compute them in the global
coordinate system and then convert them using the global2localcoord function.

Create the transmitted waveform. The transmitted waveform is an amplified version of
the generated waveform.

 txwaveform = step(sTransmit,waveform);

Radiate the signal in the instantaneous target direction. Recall that the radiator is not
steered in this direction but in an angle defined by the steering vector, txangsteer.
The steering angle is chosen because the target passes through this direction during its
motion. A plot will let us see the improvement in the response as the target moves into
the main lobe of the radar.

 txangsteer = [23.1203;-0.5357];

 sv1 = step(sSV,fc,txangsteer);

 wavrad = step(sRad,txwaveform,tgtang_tlcs,conj(sv1));

Propagate the signal from the transmitting radar to the target. Propagation coordinates
are in the global coordinate system.

 wavprop1 = step(sFS1,wavrad,txradarPos,tgtPos,txradarVel,tgtVel);

Reflect the waveform from target back to the receiving radar array. Use the simple
angle-dependent RCS model defined previously. Inputs to the rcs-model are azimuth and
elevation of the incoming and reflected rays with respect to the local target coordinate
system.

 [~,txang_tgtlcs] = rangeangle(txradarPos,tgtPos,tgtAx1);

 [~,rxang_tgtlcs] = rangeangle(rxradarPos,tgtPos,tgtAx1);

 rcs = rcsval(txang_tgtlcs(1),txang_tgtlcs(2),rxang_tgtlcs(1),rxang_tgtlcs(2));

 wavreflect = step(sTgt,wavprop1,rcs);

 ns = size(wavreflect,1);

 tm = [0:ns-1]/fs*1e6;

Propagate the signal from the target to the receiving radar. As before, all coordinates for
signal propagation are expressed in the global coordinate system.

 wavprop2 = step(sFS2,wavreflect,tgtPos,rxradarPos,tgtVel,rxradarVel);

Compute the response of the receiving antenna array in the direction from which the
radiation is coming. First, use the rangeangle function to compute the direction of

10 Coordinate Systems and Motion Modeling

10-48

the target with respect to the receiving array local axes, by specifying the receiver local
coordinate system, rxradarAx.

 [tgtrange_rlcs,tgtang_rlcs] = rangeangle(tgtPos,rxradarPos,rxradarAx);

Store the ranges and direction angles for later plotting.

 azes1(k) = tgtang_tlcs(1);

 elevs1(k) = tgtang_tlcs(2);

 azes2(k) = tgtang_rlcs(1);

 elevs2(k) = tgtang_rlcs(2);

Simulate an incoming plane wave at each element from the current direction of the
target calculated in the receiver local coordinate system.

 wavcoll = collectPlaneWave(srxURA,wavprop2,tgtang_rlcs,fc);

Beamform the arriving wave. In this scenario, the receiver beamformer points
in the direction, rxangsteer, specified by the Direction property of the
phased.PhaseShiftBeamformer System object. When the target actually lies in that
direction, the response of the array maximized.

 wavbf = step(srxBF,wavcoll);

Perform match filtering of the beamformed received wave and then find and store the
maximum value of each pulse for display. This value will be plotted after the simulation
loop ends.

 y = step(sMF,wavbf);

 rxsig(k) = max(abs(y));

end

Plot the target track in azimuth and elevation with respect to the transmitter local
coordinates. The red circle denotes the direction toward which the transmitter array
points.

figure

plot(azes1,elevs1,'.b')

grid

xlabel('Azimuth (degrees)')

ylabel('Elevation (degrees)')

title('Target Track in Transmitter Local Coordinates')

 Global and Local Coordinate Systems Radar Example

10-49

hold on

plot(txangsteer(1),txangsteer(2),'or')

hold off

Plot the target track in azimuth and elevation with respect to the receiver local
coordinates. The red circle denotes the direction toward which the beamformer points.

figure

plot(azes2,elevs2,'.b')

grid

xlabel('Azimuth (degrees)')

ylabel('Elevation (degrees)')

title('Target Track in Receiver Local Coordinates')

10 Coordinate Systems and Motion Modeling

10-50

hold on

plot(rxangsteer(1),rxangsteer(2),'or')

hold off

Plot the returned signal amplitude vs azimuth in the receiver local coordinates. The
value of the amplitude depends on several factors.

figure;

plot(azes2,rxsig,'.')

grid

xlabel('Azimuth (degrees)')

ylabel('Amplitude')

title('Amplitude vs Azimuth in Receiver Local Coordinates')

 Global and Local Coordinate Systems Radar Example

10-51

10 Coordinate Systems and Motion Modeling

10-52

Motion Modeling in Phased Array Systems

In this section...

“Support for Motion Modeling” on page 10-52
“Platform Motion with Constant Velocity” on page 10-53
“Platform Motion with Nonconstant Velocity” on page 10-54
“Track Range and Angle Changes Between Platforms” on page 10-55

Support for Motion Modeling

A critical component in phased array system applications is the ability to model
motion in space. Such modeling includes the motion of arrays, targets, and sources of
interference. For convenience, you can ignore the distinction between these objects and
collectively model the motion of a platform.

Extended bodies can undergo both translational and rotational motion in space. Phased
Array System Toolbox software supports modeling of translational motion.

Modeling translational platform motion requires the specification of a position and
velocity vector. Specification of a position vector implies a coordinate system. In the
Phased Array System Toolbox, platform position and velocity are specified in a “Global
Coordinate System” on page 10-21. You can think of the platform position as the
displacement vector from the global origin or as the coordinates of a point with respect to
the global origin.

Let r0 denote the position vector at time 0 and v denote the velocity vector. The position
vector of a platform as a function of time, r(t), is:

r t r vt() = +0

The following figure depicts the vector interpretation of translational motion.

 Motion Modeling in Phased Array Systems

10-53

r
0
=r(0)

r(t
0
)

vt

r(t)=r
0
+vt

When the platform represents a sensor element or array, it is important to know the
orientation of the element or array local coordinate axes. For example, the orientation
of the local coordinate axes is necessary to extract angle information from incident
waveforms. See “Global and Local Coordinate Systems” on page 10-21 for a description
of global and local coordinate systems in the software. Finally, for platforms with
nonconstant velocity, you must be able to update the velocity vector over time.

You can model platform position, velocity, and local axes orientation with the
phased.Platform object.

Platform Motion with Constant Velocity

Beginning with a simple example, model the motion of a platform over ten time steps.
To determine the time step, assume that you have a pulse transmitter with a pulse
repetition frequency (PRF) of 1 kilohertz. Accordingly, the time interval between each
pulse is 1 millisecond. Set the time step equal to pulse repetition interval.

PRF = 1e3;

Tstep = 1/PRF;

Nsteps = 10;

Next, construct a platform object specifying the platform’s initial position and velocity.
Assume that the initial position of the platform is 100 meters (m) from the origin at
(60,80,0). Assume the speed is approximately 30 meters per second (m/s) with the
constant velocity vector given by (15, 25.98, 0).

10 Coordinate Systems and Motion Modeling

10-54

hplat = phased.Platform('InitialPosition',[60;80;0], ...

 'Velocity', [15;25.98;0]);

The orientation of the local coordinate axes of the platform is the value of the
InitialOrientationAxes property. You can view the value of this property by
entering hplat.InitialOrientationAxes at the MATLAB command prompt.
Because the InitialOrientationAxes property is not specified in the construction of
the phased.Platform object, the property is assigned its default value of [1 0 0;0 1
0;0 0 1].

Use the step method to simulate the translational motion of the platform.

InitialPos = hplat.InitialPosition;

for k = 1:Nsteps

 pos = step(hplat,Tstep);

end

FinalPos = pos+hplat.Velocity*Tstep;

DistTravel = norm(FinalPos-InitialPos);

The step method returns the current position of the platform and then updates the
platform position based on the time step and velocity. Equivalently, the first time you
invoke the step method, the output is the position of the platform at t=0.

Recall that the platform is moving with a constant velocity of approximately 30 m/s. The
total time elapsed is 0.01 seconds. Invoking the step method returns the current position
of the platform and then updates that position. Accordingly, you expect the final position
to differ from the initial position by 0.30 meters. Confirm this difference by examining
the value of DistTravel.

Platform Motion with Nonconstant Velocity

Most platforms in phased array applications do not move with constant velocity. If
the time interval described by the number of time steps is small with respect to the
platform’s speed, you can often approximate the velocity as constant. However, there are
situations where you must update the platform’s velocity over time. You can do so with
phased.Platform because the Velocity property is tunable. See “What You Cannot
Change While Your System Is Running” for details.

In this example, assume you model a target initially at rest. The initial velocity vector is
(0,0,0). Assume the time step is 1 millisecond. After 500 milliseconds, the platform begins
to move with a speed of approximately 10 m/s. The velocity vector is (7.07,7.07,0). The
platform continues at this velocity for an additional 500 milliseconds.

 Motion Modeling in Phased Array Systems

10-55

Tstep = 1e-3;

Nsteps = 1/Tstep;

hplat = phased.Platform('InitialPosition',[100;100;0]);

for k = 1:Nsteps/2

 [pos,vel] = step(hplat,Tstep);

end

hplat.Velocity = [7.07; 7.07; 0];

for k=Nsteps/2+1:Nsteps

 [pos,vel] = step(hplat,Tstep);

end

Track Range and Angle Changes Between Platforms

This example uses the phased.Platform object to model the changes in range between a
stationary radar and a moving target. The radar is located at (1000,1000,0) and has a
velocity of (0,0,0). The target has an initial position of (5000,8000,0) and moves with a
constant velocity of (–30,–45,0). The pulse repetition frequency (PRF) is 1 kHz. Assume
that the radar emits ten pulses.

The example uses phased.Platform to model the motion of the target and radar. The
global2localcoord function translates the target’s rectangular coordinates in the
global coordinate system to spherical coordinates in the local coordinate system of the
radar.

PRF = 1e3;

Tstep = 1/PRF;

hradar = phased.Platform('InitialPosition',[1000;1000;0]);

htgt = phased.Platform('InitialPosition',[5000;8000;0],...

 'Velocity',[-30;-45;0]);

% Calculate initial target range and angle

[InitRng, InitAng] = rangeangle(htgt.InitialPosition,...

 hradar.InitialPosition);

% Calculate relative radial speed

v = radialspeed(htgt.InitialPosition,htgt.Velocity,...

 hradar.InitialPosition);

% Simulate target motion

Npulses = 10; % Number of pulses

for num = 1:Npulses

 tgtpos = step(htgt,Tstep);

end

tgtpos = tgtpos+htgt.Velocity*Tstep;

% Calculate final target range and angle

[FinalRng,FinalAng] = rangeangle(tgtpos,...

10 Coordinate Systems and Motion Modeling

10-56

 hradar.InitialPosition);

DeltaRng = FinalRng-InitRng;

The constant velocity of the target is approximately 54 m/s. The total time elapsed is 0.01
seconds. The range between the target and the radar should decrease by approximately
54 centimeters. Compare the initial range of the target, InitRng, to the final range,
FinalRng, to confirm that this decrease occurs.

Related Examples
• “Introduction to Space-Time Adaptive Processing”

 Model Motion of Circling Airplane

10-57

Model Motion of Circling Airplane

Start with an airplane moving at 150 kmh in a circle of radius 10 km and descending
at the same time at a rate of 20 m/sec. Compute the motion of the airplane from
its instantaneous acceleration as an argument to the step method. Set the initial
orientation of the platform to the identity, coinciding with the global coordinate system.

Set up the scenario

Specify the initial position and velocity of the airplane. The airplane has a ground range
of 10 km and an altitude of 20 km.

range = 10000;

alt = 20000;

initPos = [cosd(60)*range;sind(60)*range;alt];

originPos = [1000,1000,0]';

originVel = [0,0,0]';

vs = 150.0;

phi = atan2d(initPos(2)-originPos(2),initPos(1)-originPos(1));

phi1 = phi + 90;

vx = vs*cosd(phi1);

vy = vs*sind(phi1);

initVel = [vx,vy,-20]';

sAirplane = phased.Platform('MotionModel','Acceleration',...

 'AccelerationSource','Input port','InitialPosition',initPos,...

 'InitialVelocity',initVel,'OrientationAxesOutputPort',true,...

 'InitialOrientationAxes',eye(3));

relPos = initPos - originPos;

relVel = initVel - originVel;

rel2Pos = [relPos(1),relPos(2),0]';

rel2Vel = [relVel(1),relVel(2),0]';

r = sqrt(rel2Pos'*rel2Pos);

accelmag = vs^2/r;

unitvec = rel2Pos/r;

accel = -accelmag*unitvec;

T = 0.5;

N = 1000;

Compute the trajectory

Specify the acceleration of an object moving in a circle in the x-y plane. The acceleration
is v^2/r towards the orign

posmat = zeros(3,N);

10 Coordinate Systems and Motion Modeling

10-58

r1 = zeros(N);

v = zeros(N);

for n = 1:N

 [pos,vel,oax] = step(sAirplane,T,accel);

 posmat(:,n) = pos;

 vel2 = vel(1)^2 + vel(2)^2;

 v(n) = sqrt(vel2);

 relPos = pos - originPos;

 rel2Pos = [relPos(1),relPos(2),0]';

 r = sqrt(rel2Pos'*rel2Pos);

 r1(n) = r;

 accelmag = vel2/r;

 accelmag = vs^2/r;

 unitvec = rel2Pos/r;

 accel = -accelmag*unitvec;

end

Display the final orientation of the local coordinate system.

disp(oax)

 -0.3658 -0.9307 -0.0001

 0.9307 -0.3658 -0.0010

 0.0009 -0.0005 1.0000

Plot the trajectory and the origin position

posmat = posmat/1000;

figure(1)

plot3(posmat(1,:),posmat(2,:),posmat(3,:),'b.')

hold on

plot3(originPos(1)/1000,originPos(2)/1000,originPos(3)/1000,'ro')

xlabel('X (km)')

ylabel('Y (km)')

zlabel('Z (km)')

grid

hold off

 Model Motion of Circling Airplane

10-59

10 Coordinate Systems and Motion Modeling

10-60

Doppler Shift and Pulse-Doppler Processing
In this section...

“Support for Pulse-Doppler Processing” on page 10-60
“Converting Speed to Doppler Shift” on page 10-60
“Converting Doppler Shift to Speed” on page 10-61
“Pulse-Doppler Processing of Slow-Time Data” on page 10-61

Support for Pulse-Doppler Processing

Relative motion between a signal source and a receiver produces shifts in the frequency
of the received waveform. Measuring this Doppler shift provides an estimate of the
relative radial velocity of a moving target.

For a narrowband signal propagating at the speed of light, the one-way Doppler shift in
hertz is:

Df
v

= ±
l

where v is the relative radial speed of the target with respect to the transmitter. For a
target approaching the receiver, the Doppler shift is positive. For a target receding from
the transmitter, the Doppler shift is negative.

You can use speed2dop to convert the relative radial speed to the Doppler shift in hertz.
You can use dop2speed to determine the radial speed of a target relative to a receiver
based on the observed Doppler shift.

Converting Speed to Doppler Shift

Assume a target approaching a stationary receiver with a radial speed of 23 meters per
second. The target is reflecting a narrowband electromagnetic wave with a frequency of 1
GHz. Estimate the one-way Doppler shift.

freq = 1e9;

lambda = physconst('LightSpeed')/freq;

DopplerShift = speed2dop(23,lambda)

The one-way Doppler shift is approximately 76.72 Hz. The fact that the target is
approaching the receiver results in a positive Doppler shift.

 Doppler Shift and Pulse-Doppler Processing

10-61

Converting Doppler Shift to Speed

Assume you observe a Doppler shift of 400 Hz for a waveform with a frequency of 9 GHz.
Determine the radial velocity of the target.

freq = 9e9;

lambda = physconst('LightSpeed')/freq;

speed = dop2speed(400,lambda)

The target speed is approximately 13.32 m/sec.

Pulse-Doppler Processing of Slow-Time Data

A common technique for estimating the radial velocity of a moving target is pulse-
Doppler processing. In pulse-Doppler processing, you take the discrete Fourier transform
(DFT) of the slow-time data from a range bin containing a target. If the pulse repetition
frequency is sufficiently high with respect to the speed of the target, the target is
located in the same range bin for a number of pulses. Accordingly, the slow-time data
corresponding to that range bin contain information about the Doppler shift induced by
the moving target, which you can use to estimate the target’s radial velocity.

The slow-time data are sampled at the pulse repetition frequency (PRF) and therefore
the DFT of the slow-time data for a given range bin yields an estimate of the Doppler
spectrum from [-PRF/2, PRF/2] Hz. Because the slow-time data are complex-valued,
the DFT magnitudes are not necessarily an even function of the Doppler frequency.
This removes the ambiguity between a Doppler shift corresponding to an approaching
(positive Doppler shift), or receding (negative Doppler shift) target. The resolution in the
Doppler domain is PRF/N where N is the number of slow-time samples. You can pad the
spectral estimate of the slow-time data with zeros to interpolate the DFT frequency grid
and improve peak detection, but this does not improve the Doppler resolution.

The typical workflow in pulse-Doppler processing involves:

• Detecting a target in the range dimension (fast-time samples). This gives the range
bin to analyze in the slow-time dimension.

• Computing the DFT of the slow-time samples corresponding to the specified
range bin. Identify significant peaks in the magnitude spectrum and convert the
corresponding Doppler frequencies to speeds.

To illustrate pulse-Doppler processing with Phased Array System Toolbox software,
assume that you have a stationary monostatic radar located at the global origin,

10 Coordinate Systems and Motion Modeling

10-62

[0;0;0]. The radar consists of a single isotropic antenna element. There is a target with
a non-fluctuating radar cross section (RCS) of 1 square meter located initially at [1000;
1000; 0] and moving with a constant velocity of [-100; -100; 0]. The antenna
operates at a frequency of 1 GHz and illuminates the target with 10 rectangular pulses at
a PRF of 10 kHz.

Define the System objects needed for this example and set their properties. Seed
the random number generator for the phased.ReceiverPreamp object to produce
repeatable results.

hwav = phased.RectangularWaveform('SampleRate',5e6,...

 'PulseWidth',6e-7,'OutputFormat','Pulses',...

 'NumPulses',1,'PRF',1e4);

htgt = phased.RadarTarget('Model','Nonfluctuating',...

 'MeanRCS',1,'OperatingFrequency',1e9);

htgtloc = phased.Platform('InitialPosition',[1000; 1000; 0],...

 'Velocity',[-100; -100; 0]);

hant = phased.IsotropicAntennaElement(...

 'FrequencyRange',[5e8 5e9]);

htrans = phased.Transmitter('PeakPower',5e3,'Gain',20,...

'InUseOutputPort',true);

htransloc = phased.Platform('InitialPosition',[0;0;0],...

 'Velocity',[0;0;0]);

hrad = phased.Radiator('OperatingFrequency',1e9,'Sensor',hant);

hcol = phased.Collector('OperatingFrequency',1e9,'Sensor',hant);

hspace = phased.FreeSpace('SampleRate',hwav.SampleRate,...

 'OperatingFrequency',1e9,'TwoWayPropagation',false);

hrx = phased.ReceiverPreamp('Gain',0,'LossFactor',0,...

 'SampleRate',5e6,'NoiseFigure',5,...

 'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

The following loop transmits ten successive rectangular pulses toward the target, reflects
the pulses off the target, collects the reflected pulses at the receiver, and updates the
target’s position with the specified constant velocity.

NumPulses = 10;

sig = step(hwav); % get waveform

transpos = htransloc.InitialPosition; % get transmitter position

rxsig = zeros(length(sig),NumPulses);

% transmit and receive ten pulses

for n = 1:NumPulses

 % update target position

 [tgtpos,tgtvel] = step(htgtloc,1/hwav.PRF);

 [tgtrng,tgtang] = rangeangle(tgtpos,transpos);

 Doppler Shift and Pulse-Doppler Processing

10-63

 tpos(n) = tgtrng;

 [txsig,txstatus] = step(htrans,sig); % transmit waveform

 txsig = step(hrad,txsig,...

 tgtang); % radiate waveform toward target

 txsig = step(hspace,txsig,transpos,tgtpos,...

 [0;0;0],tgtvel); % propagate waveform to target

 txsig = step(htgt,txsig); % reflect the signal

 % propagate waveform from the target to the transmiter

 txsig = step(hspace,txsig,tgtpos,transpos,tgtvel,[0;0;0]);

 txsig = step(hcol,txsig,tgtang); % collect signal

 rxsig(:,n) = step(hrx,txsig,~txstatus); % receive the signal

end

rxsig contains the echo data in a 500-by-10 matrix where the row dimension contains
the fast-time samples and the column dimension contains the slow-time samples. In
other words, each row in the matrix contains the slow-time samples from a specific range
bin.

Construct a linearly-spaced grid corresponding to the range bins from the fast-time
samples. The range bins extend from 0 meters to the maximum unambiguous range.

prf = hwav.PRF;

fs = hwav.SampleRate;

fasttime = unigrid(0,1/fs,1/prf,'[)');

rangebins = (physconst('LightSpeed')*fasttime)/2;

The next step is to detect range bins which contain targets. In this simple scenario,
no matched filtering or time-varying gain compensation is utilized. See “Doppler
Estimation” for an example using matched filtering and range-dependent gain
compensation to improve the SNR.

In this example, set the false-alarm probability to 1e-9. Use noncoherent integration of
the ten rectangular pulses and determine the corresponding threshold for detection in
white Gaussian noise. Because this scenario contains only one target, take the largest
peak above the threshold. Display the estimated target range.

probfa = 1e-9;

NoiseBandwidth = 5e6/2;

npower = noisepow(NoiseBandwidth,...

 hrx.NoiseFigure,hrx.ReferenceTemperature);

thresh = npwgnthresh(probfa,NumPulses,'noncoherent');

thresh = sqrt(npower*db2pow(thresh));

[pks,range_detect] = findpeaks(pulsint(rxsig,'noncoherent'),...

10 Coordinate Systems and Motion Modeling

10-64

 'MinPeakHeight',thresh,'SortStr','descend');

range_estimate = rangebins(range_detect(1));

fprintf('Estimated range of the target is %4.2f meters.\n',...

 range_estimate);

Extract the slow-time samples corresponding to the range bin containing the detected
target. Compute the power spectral density estimate of the slow-time samples using
periodogram and find the peak frequency. Convert the peak Doppler frequency to a
speed using dop2speed. A positive Doppler shift indicates that the target is approaching
the transmitter. A negative Doppler shift indicates that the target is moving away from
the transmitter.

ts = rxsig(range_detect(1),:).';

[Pxx,F] = periodogram(ts,[],256,prf,'centered');

plot(F,10*log10(Pxx)); grid;

xlabel('Frequency (kHz)');

ylabel('Power (dB)');

title('Periodogram Spectrum Estimate');

[Y,I] = max(Pxx);

lambda = physconst('LightSpeed')/1e9;

tgtspeed = dop2speed(F(I)/2,lambda);

fprintf('Estimated target speed is %3.1f m/sec.\n',tgtspeed);

if F(I)>0

 fprintf('The target is approaching the radar.\n');

else

 fprintf('The target is moving away from the radar.\n');

end

 Doppler Shift and Pulse-Doppler Processing

10-65

The code produces:

Estimated range of the target is 1439.00 meters.

Estimated target speed is 140.5 m/sec.

The target is approaching the radar.

The true radial speed of the target is detected within the Doppler resolution and the
range of the target is detected within the range resolution of the radar.

Related Examples
• “Doppler Estimation”
• “Scan Radar Using a Uniform Rectangular Array”

11

Using Polarization

11 Using Polarization

11-2

Polarized Fields

In this section...

“Introduction to Polarization” on page 11-2
“Linear and Circular Polarization” on page 11-4
“Elliptic Polarization” on page 11-9
“Linear and Circular Polarization Bases” on page 11-13
“Sources of Polarized Fields” on page 11-17
“Scattering Cross-Section Matrix” on page 11-25
“Polarization Loss Due to Field and Receiver Mismatch” on page 11-29
“Polarization Example” on page 11-31

Introduction to Polarization

You can use the Phased Array System Toolbox software to simulate radar systems that
transmit, propagate, reflect, and receive polarized electromagnetic fields. By including
this capability, the toolbox can realistically model the interaction of radar waves with
targets and the environment.

It is a basic property of plane waves in free-space that the directions of the electric and
magnetic field vectors are orthogonal to their direction of propagation. The direction of
propagation of an electromagnetic wave is determined by the Poynting vector

S E H= ¥

In this equation, E represents the electric field and H represents the magnetic field.
The quantity, S, represents the magnitude and direction of the wave’s energy flux.
Maxwell’s equations, when applied to plane waves, produce the result that the electric
and magnetic fields are related by

E s H

H s E

= - ¥

= ¥

Z

Z

1

The vector s, the unit vector in the S direction, represents the direction of propagation
of the wave. The quantity, Z, is the wave impedanceand is a function of the electric
permittivity and the magnetic permeability of medium in which the wave travels.

 Polarized Fields

11-3

After manipulating the two equations, you can see that the electric and magnetic fields
are orthogonal to the direction of propagation

E s H s• • .= = 0

This last result proves that there are really only two independent components of the
electric field, labeled Ex and Ey. Similarly, the magnetic field can be expressed in terms
of two independent components. Because of the orthogonality of the fields, the electric
field can be represented in terms of two unit vectors orthogonal to the direction of
propagation.

E e e= +E Ex x y y
$ $

The unit vectors together with the unit vector in direction of propagation

{˘ , ˘ , }e e sx y .

form a right-handed orthonormal triad. Later, these vectors and the coordinates they
define will be related to the coordinates of a specific radar system. In radar systems, it is
common to use the subscripts, H and V, denoting the horizontal and vertical components,
instead of x and y. Because the electric and magnetic fields are determined by each other,
only the properties of the electric field need be consider.

For a radar system, the electric and magnetic field are actually spherical waves, rather
than plane waves. However, in practice, these fields are usually measured in the far
field region or radiation zone of the radar source and are approximately plane waves.
In the far field, the waves are called quasi-plane waves. A point lies in the far field if
its distance, R, from the source satisfies R ≫D2/λ where D is a typical dimension of the
source, whether it is a single antenna or an array of antennas.

Polarization applies to purely sinusoidal signals. The most general expression for a
sinusoidal plane-wave has the form

E k x e k x e e e= - +() + - +() +=E t E t E Ex x x y y y x x y y0 0cos • cos •w f w f$ $ $ $

The quantities Ex0 and Ey0 are the real-valued, non-negative, amplitudes of the
components of the electric field and ϕx and ϕy are field’s phases. This expression is the
most general one used for a polarized wave. An electromagnetic wave is polarized if the
ratio of the amplitudes of its components and phase difference between it components

11 Using Polarization

11-4

do not change with time. The definition of polarization can be broadened to include
narrowband signals, for which the bandwidth is small compared to the center or carrier
frequency of the signal. The amplitude ratio and phases difference vary slowly with time
when compared to the period of the wave and may be thought of as constant over many
oscillations.

You can usually suppress the spatial dependence of the field and write the electric field
vector as

E e e e e= +() + +() +=E t E t E Ex x x y y y x x y y0 0cos cosw f w f$ $ $ $

Linear and Circular Polarization

The preceding equation for a polarized plane wave shows that the tip of the two-
dimensional electric field vector moves along a path which lies in a plane orthogonal to
field’s direction of propagation. The shape of the path depends upon the magnitudes and
phases of the components. For example, if ϕx = ϕy, you can remove the time dependence
and write

E
E

E
Ey

y

x
x=

0

0

This equation represents a straight line through the origin with positive slope.
Conversely, suppose ϕx = ϕy + π. Then, the tip of the electric field vector follows a straight
line through the origin with negative slope

E
E

E
Ey

y

x
x= -

0

0

These two polarization cases are named linear polarized because the field always
oscillates along a straight line in the orthogonal plane. If Ex0= 0, the field is vertically
polarized, and if Ey0 = 0 the field is horizontally polarized.

A different case occurs when the amplitudes are the same, Ex = Ey, but the phases differ
by ±π/2

E E t

E E t E t

x

y

= +

= + ± = +

0

0 02

cos()

cos(/) sin()

w f

w f p w f∓

 Polarized Fields

11-5

By squaring both sides, you can show that the tip of the electric field vector obeys the
equation of a circle

E E Ex y
2 2

0
2

+ =

While this equation gives the path the vector takes, it does not tell you in what
direction the electric field vector travels around the circle. Does it rotate clockwise or
counterclockwise? The rotation direction depends upon the sign of π/2 in the phase. You
can see this dependency by examining the motion of the tip of the vector field. Assume
the common phase angle, ϕ = 0. This assumption is permissible because the common
phase only determines starting position of the vector and does not change the shape
of its path. First, look at the +π/2 case for a wave travelling along the s-direction (out
of the page). At t=0, the vector points along the x-axis. One quarter period later, the
vector points along the negative y-axis. After another quarter period, it points along the
negative x-axis.

x

y

E (t = 0)

Left hand circular polarization. The direction of

the electric vector at 0, 1/4, 1/2, and 3/4 periods, T.

The z-axis points out of the page.

E (t = T/4)

E (t = T/2)

E (t = 3T/4)

11 Using Polarization

11-6

MATLAB uses the IEEE convention to assign the names right-handed or left-handed
polarization to the direction of rotation of the electric vector, rather than clockwise or
counterclockwise. When using this convention, left or right handedness is determined by
pointing your left or right thumb along the direction of propagation of the wave. Then,
align the curve of your fingers to the direction of rotation of the field at a given point in
space. If the rotation follows the curve of your left hand, then the wave is left-handed
polarized. If the rotation follows the curve of your right hand, then the wave is right-
handed polarized. In the preceding scenario, the field is left-handed circularly polarized
(LHCP). The phase difference –π/2 corresponds to right-handed circularly polarized
wave (RHCP). The following figure provides a three-dimensional view of what a LHCP
electromagnetic wave looks like as it moves in the s-direction.

When the terms clockwise or counterclockwise are used they depend upon how you look
at the wave. If you look along the direction of propagation, then the clockwise direction
corresponds to right-handed polarization and counterclockwise corresponds to left-
handed polarization. If you look toward where the wave is coming from, then clockwise
corresponds to left-handed polarization and counterclockwise corresponds to right-
handed polarization.

 Polarized Fields

11-7

Left-Handed Circular Polarization

The figure below summarizes the appearance of linear and circularly polarized fields as
they move towards you along the s-direction.

11 Using Polarization

11-8

τ

Ex

Ey

O
x

y

E
τ

Ex

Ey

O
x

y

E

Linear polarization with positive slope Linear polarization with negative slope

Ex

Ey

O
x

y

E

Right hand circular polarization

Ex

Ey

O
x

y

E

Left hand circular polarization

Linear and Circular Polarization

 Polarized Fields

11-9

Elliptic Polarization

Besides the linear and circular states of polarization, a third type of polarization is
elliptic polarization. Elliptic polarization includes linear and circular polarization as
special cases.

As with linear or circular polarization, you can remove the time dependence to obtain the
locus of points that the tip of the electric field vector travels

E

E

E

E

E

E

E

E

x

x

y

y

x

x

y

y0

2

0

2

0 0

2
Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

Ê

Ë
Á

ˆ

¯
˜
Ê

Ë
ÁÁ

ˆ

¯
˜̃ =cosf ssin

2 f

In this case, φ = φy – φx. This equation represents a tilted two-dimensional ellipse. Its
size and shape are determined by the component amplitudes and phase difference. The
presence of the cross term indicates that the ellipse is tilted. The equation does not, just
as in the circularly polarized case, provide any information about the rotation direction.
For example, the following figure shows the instantaneous state of the electric field but
does not indicate the direction in which the field is rotating.

The size and shape of a two-dimensional ellipse can be defined by three parameters.
These parameters are the lengths of its two axes, the semi-major axis, a, and semi-minor
axis, b, and a tilt angle, τ. The following figure illustrates the three parameters of a tilted
ellipse. You can derive them from the two electric field amplitudes and phase difference.

11 Using Polarization

11-10

τ

Ex

Ey

O

x

y

a

b

E

Ey0

Ex0

Polarization Ellipse

Polarization can best be understood in terms of complex signals. The complex
representation of a polarized wave has the form

E e e e e= + += ()E e e E e e E e E e ex
i i t

x y
i i t

y x
i

x y
i

y
ix y x y

0 0 0 0

f w f w f f w$ $ $ $ tt

Define the complex polarization ratio as the ratio of the complex amplitudes

r
f f f= =

-()E

E
e

E

E
e

y

x

i y

x

iy x0

0

0

0

 Polarized Fields

11-11

where ϕ = ϕy – ϕx.

It is useful to introduce the polarization vector. For the complex polarized electric field
above, the polarization vector, P, is obtained by normalizing the electric field

P e e e e= + = +
-()E

E

E

E
e

E

E

E

E
ex

m

x
y

m

i
y

x

m

x
y

m

i
y

y x0 0 0 0$ $ $ $f f f

where Em
2 = Ex0

2 + Ey0
2 is the magnitude of the wave.

The overall size of the polarization ellipse is not important because that can vary as the
wave travels through space, especially through geometric attenuation. What is important
is the shape of the ellipse. Thus, the significant ellipse parameters are the ratio of its axis
dimensions, a/b, called the axial ratio, and the tilt angle, τ. Both of these quantities can
be determined from the ratio of the component amplitudes and the phase difference, or,
equivalently, from the polarization ratio. Another quantity, equivalent to the axial ratio,
is the ellipticity angle, ε.

In the Phased Array System Toolbox software, you can use the polratio function to
convert the complex amplitudes fv=[Ey;Ex] to the polarization ratio.

p = polratio(fv)

Tilt Angle

The tilt angle is defined as the positive (counterclockwise) rotation angle from the x-axis
to the semi-major axis of the ellipse. Because of the symmetry properties of the ellipse,
the tilt angle, τ, needs only be defined in the range –π/2 ≤ τ ≤ π/2. You can find the tilt
angle by determining the rotated coordinate system in which the semi-major and semi-
minor axes align with the rotated coordinate axes. Then, the ellipse equation has no
cross-terms. The solution takes the form

tan cos2
2 0 0

0

2

0

2
t f=

-

E E

E E

x y

x y

where φ = φy – φx. Notice that you can rewrite this equation strictly in terms of the
amplitude ratio and the phase difference.

Axial Ratio and Ellipticity Angle

After solving for the tilt angle, you can determine the semi-major and semi-minor axis
lengths. Conceptually, you rotate the ellipse clockwise by the tilt angle and measure the

11 Using Polarization

11-12

lengths of the intersections of the ellipse with the x- and y-axes. The point of intersection
with the larger value is the semi-major axis, a, and the one with the smaller value is the
semi-minor axis, b.

The axial ratio is defined as AR = a/b and, by construction, is always greater than or
equal to one. The ellipticity angle is defined by

tane = ∓
b

a

and always lies in the range–π/4 ≤ τ ≤ π/4.

If you first introduced the auxilliary angle, α, by

tana =

E

E

y

x

0

0

then, the ellipticity angle is given by

sin sin sin2 2e a f=

Both the axial ratio and ellipticity angle are defined from the amplitude ratio and phase
difference and are independent of the overall magnitude of the field.

Rotation Sense

For elliptic polarization, just as with circular polarization, you need another parameter
to completely describe the ellipse. This parameter must provide the rotation sense or
the direction that the tip of the electric (or magnetic vector) moves in time. The rate
of change of the angle that the field vector makes with the x-axis is proportion to –sin
φ where φ is the phase difference. If sin φ is positive, the rate of change is negative,
indicating that the field has left-handed polarization. If sin φ is negative, the rate of
change is positive or right-handed polarization.

The function polellip lets you find the values of the parameters of the polarization
ellipse from either the field component vector fv=[Ey;Ex] or the polarization ratio, p.

fv=[Ey;Ex];

[tau,epsilon,ar,rs] = polellip(fv);

p = polratio(fv);

[tau,epsilon,ar,rs] = polellip(p);

The variables tau, epsilon, ar and rs represent the tilt angle, ellipticity angle, axial
ratio and rotation sense, respectively. Both syntaxes give the same result.

 Polarized Fields

11-13

Polarization Value Summary

This table summaries several different common polarization states and the values of the
amplitudes, phases, and polarization ratio that produce them:

Polarization Amplitudes Phases Polarization Ratio

Linear positive slope Any non-negative
real values for Ex, Ey.

φy = φx Any non-negative
real number

Linear negative
slope

Any non-negative
real values for Ex, Ey

φy = φx+ π Any negative real
number

Right-Handed
Circular

Ex=Ey φy= φx– π/2 –i

Left-Handed
Circular

Ex=Ey φy= φx + π/2 i

Right-Handed
Elliptical

Any non-negative
real values for Ex, Ey

sin (φy– φx) < 0 sin(arg ρ) < 0

Left-Handed
Elliptical

Any non-negative
real values for Ex, Ey

sin (φy– φx) >0 sin(arg ρ) > 0

Linear and Circular Polarization Bases

As shown earlier, you can express a polarized electric field as a linear combination of
basis vectors along the x and y directions. For example, the complex electric field vectors
for the right-handed circularly polarized (RHCP) wave and the left-handed circularly
polarized (LHCP) wave, take the form:

E e e=
+

Re[()]
()

E i ex y
i t

0 ∓
w f

In this equation, the positive sign is for the LHCP field and the negative sign is for the
RHCP field. These two special combinations can be given a new name. Define a new basis
vector set, called the circular basis set

e e e

e e e

r

l

x y

x y

i

i

= -

= +

1

2

1

2

()

()

11 Using Polarization

11-14

You can express any polarized field in terms of the circular basis set instead of the linear
basis set. Conversely, you can also write the linear polarization basis in terms of the
circular polarization basis

e e e

e e e

x r l

y r l
i

= +

= -

1

2

1

2

()

()

Any general elliptic field can be written as a combination of circular basis vectors

E e e= +E E
l l r r

Jones Vector

The polarized field is orthogonal to the wave’s direction of propagation. Thus, the field
can be completely specified by the two complex components of the electric field vector in
the plane of polarization. The formulation of a polarized wave in terms of two-component
vectors is called the Jones vector formulation. The Jones vector formulation can be
expressed in either a linear basis or a circular basis or any basis. This table shows the
representation of common polarizations in a linear basis and circular basis.

Common Polarizations Jones Vector in Linear Basis Jones Vector in Circular Basis

Vertical [0;1] 1/sqrt(2)*[-1;1]

Horizontal [1;0] 1/sqrt(2)*[1;1]

45° Linear 1/sqrt(2)*[1;1] 1/sqrt(2)*[1-1i;1+1i]

135° Linear 1/sqrt(2)*[1;-1] 1/sqrt(2)*[1+1i;1-1i]

Right Circular 1/sqrt(2)*[1;-1i] [0;1]

Left Circular 1/sqrt(2)*[1;1i] [1;0]

Stokes Parameters and the Poincaré Sphere

The polarization ellipse is an instantaneous representation of a polarized wave. However,
its parameters, the tilt angle and the ellipticity angle, are often not directly measurable,
particularly at very high frequencies such as light frequencies. However, you can
determine the polarization from measurable intensities of the polarized field.

 Polarized Fields

11-15

The measurable intensities are the Stokes parameters, S0, S1, S2, and S3. The first
Stokes parameter, S0, describes the total intensity of the field. The second parameter,
S1, describes the preponderance of linear horizontally polarized intensity over linear
vertically polarized intensity. The third parameter, S2, describes the preponderance
of linearly +45° polarized intensity over linearly 135° polarized intensity. Finally, S3
describes the preponderance of right circularly polarized intensity over left circularly
polarized intensity. The Stokes parameters are defined as

S E E

S E E

S E E

S E E

x y

x y

x y

x y

0 0
2

0
2

1 0

2

0

2

2 0 0

3 0 0

2

2

= +

= -

=

=

cos

sin

f

f

For completely polarized fields, you can show by time averaging the polarization ellipse
equation that

S S S S
0

2

1

2

2

2

3

2
= + +

Thus, there are only three independent Stokes’ parameters.

For partially polarized fields, in contrast, the Stokes parameters satisfy the inequality

S S S S
0

2

1

2

3

2

3

2
< + +

The Stokes parameters are related to the tilt and ellipticity angles, τ and ε

S S

S S

S S

1 0

2 0

3 0

2 2

2 2

2

=

=

=

cos cos

sin cos

sin

t e

t e

e

and inversely by

tan

sin

2

2

2

1

3

0

t

e

=

=

S

S

S

S

11 Using Polarization

11-16

After you measure the Stokes’ parameters, the shape of the ellipse is completely
determined by the preceding equations.

The two-dimensional Poincaré sphere can help you visualize the state of a polarized
wave. Any point on or in the sphere represents a state of polarization determined by the
four Stokes parameters, S0, S1, S2, and S3. On the Poincaré sphere, the angle from the S1-
S2 plane to a point on the sphere is twice the ellipticity angle, ε. The angle from the S1-
axis to the projection of the point into the S1-S2 plane is twice the tilt angle, τ.

2τ

2ϵ

S
0

S
1

S
3

S
2

As an example, solve for the Stokes parameters of a RHCP field, fv=[1,-i], using the
stokes function.

 Polarized Fields

11-17

S = stokes(fv)

S =

 2

 0

 0

 -2

Sources of Polarized Fields

Antennas couple propagating electromagnetic radiation to electrical currents in wires,
electromagnetic fields in waveguides or aperture fields. This coupling is a phenomenon
common to both transmitting and receiving antennas. For some transmitting antennas,
source currents in a wire produce electromagnetic waves that carrying power in all
directions. Sometimes an antenna provides a means for a guided electromagnetic wave
on a transmission line to transition to free-space waves such as a waveguide feeding a
dish antennas. For receiving antennas, electromagnetic fields can induce currents in
wires to generate signals to be then amplified and passed on to a detector.

For transmitting antennas, the shape of the antenna is chosen to enhance the power
projected into a given direction. For receiving antennas, you choose the shape of the
antenna to enhance the power received from a particular direction. Often, many
transmitting antennas or receiving antennas are formed into an array. Arrays increase
the transmitted power for a transmitting system or the sensitivity for a receiving system.
They improve directivity over a single antenna.

An antenna can be assigned a polarization. The polarization of a transmitting antenna
is the polarization of its radiated wave in the far field. The polarization of a receiving
antenna is actually the polarization of a plane wave, from a given direction, resulting in
maximum power at the antenna terminals. By the reciprocity theorem, all transmitting
antennas can serve as receiving antennas and vice versa.

Each antenna or array has an associated local Cartesian coordinate system (x,y,z) as
shown in the following figure. See “Global and Local Coordinate Systems” on page
10-21 for more information. The local coordinate system can also be represented by a
spherical coordinate system using azimuth, elevation and range coordinates, az, el, r, or
alternately written, (φ,θ,r), as shown. At each point in the far field, you can create a set
of unit spherical basis vectors, { , , }e e r

$ $ $
H V . The basis vectors are aligned with the (φ,θ,r)

directions, respectively. In the far field, the electric field is orthogonal to the unit vector

11 Using Polarization

11-18

r̂ . The components of a polarized field with respect to this basis, (EH,EV), are called the
horizontal and vertical components of the polarized field. In radar, it is common to use
(H,V) instead of (x,y) to denote the components of a polarized field. In the far field, the
polarized electric field takes the form

E F e e= = +()(,) (,) � (,) �f q f q f q
e

r
F F

e

r

ikr

H H V V

ikr

In this equation, the quantity F(φ,θ) is called the vector radiation pattern of the source
and contains the angular dependence of the field in the far-field region.

x

y

z

êΗ

êV

θ, el

φ, az

r̂

Radar Coordinate System
r

F(φ,θ)

Short Dipole Antenna Element

The simplest polarized antenna is the dipole antenna which consist of a split length of
wire coupled at the middle to a coaxial cable. The simplest dipole, from a mathematical
perspective, is the Hertzian dipole, in which the length of wire is much shorter than a
wavelength. A diagram of the short dipole antenna of length L appears in the next figure.
This antenna is fed by a coaxial feed which splits into two equal length wires of length
L/2. The current, I, moves along the z-axis and is assumed to be the same at all points in
the wire.

 Polarized Fields

11-19

az

el

x

y

z

r

EH

EV
L/2

-L/2

The electric field in the far field has the form

E

E

E
iZ IL e

r

r

H

V

ikr

=

=

= -

-

0

0

2

0

l
cos el

The next example computes the vertical and horizontal polarization components of the
field. The vertical component is a function of elevation angle and is axially symmetric.
The horizontal component vanishes everywhere.

11 Using Polarization

11-20

The toolbox lets you model a short dipole antenna using the
phased.ShortDipoleAntennaElement System object.

Short-Dipole Polarization Components

Compute the vertical and horizontal polarization components of the field created by a
short-dipole antenna pointed along the z-direction. Plot the components as a function of
elevation angle from 0° to 360°.

Create the phased.ShortDipoleAntennaElement System object™.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[1,2]*1e9,'AxisDirection','Z');

Compute the antenna response. Because the elevation angle argument to the step
method is restricted to ±90°, first construct the response for 0° azimuth, and then for
180° azimuth. Combine the two responses. The operating frequency of the antenna is 1.5
GHz.

el = [-90:90];

az = zeros(size(el));

fc = 1.5e9;

resp = step(sSD,fc,[az;el]);

az = 180.0*ones(size(el));

resp1 = step(sSD,fc,[az;el]);

Overlay the responses in the same figure.

figure(1);

subplot(121);

polar(el*pi/180.0,abs(resp.V.'),'b')

hold on

polar((el+180)*pi/180.0,abs(resp1.V.'),'b')

str = sprintf('%s\n%s','Vertical Polarization','vs Elevation Angle');

title(str)

hold off

subplot(122);

polar(el*pi/180.0,abs(resp.H.'),'b')

hold on

polar((el+180)*pi/180.0,abs(resp1.H.'),'b')

str = sprintf('%s\n%s','Horizontal Polarization','vs Elevation Angle');

title(str)

hold off

 Polarized Fields

11-21

The plot shows that the horizontal component vanishes, as expected.

Crossed Dipole Antenna Element

You can use a cross-dipole antenna to generate circularly-polarized radiation. The
crossed-dipole antenna consists of two identical but orthogonal short-dipole antennas
that are phased 90° apart. A diagram of the crossed dipole antenna appears in the
following figure. The electric field created by a crossed-dipole antenna constructed from a
y-directed short dipole and a z-directed short dipole has the form

11 Using Polarization

11-22

E

E
iZ IL e

r

E
iZ IL

i
e

r

H

ikr

V

=

= -

=

-

0

2

2

0

0

l

l

cos

(sin sin cos)

az

el az + el
--ikr

r

The polarization ratio EV/EH, when evaluated along the x-axis, is just –i which means
that the polarization is exactly RHCP along the x-axis. It is predominantly RHCP
when the observation point is close to the x-axis. Moving away from the x-axis, the field
becomes a mixture of LHCP and RHCP polarizations. Along the –x-axis, the field is
LHCP polarized. The figure illustrates, for a point near the x, that the field is primarily
RHCP.

 Polarized Fields

11-23

az

el

x

y

z

EL

L/2-L/2

L/2

-L/2

The next example computes the circularly polarized field components. You can see how
the circular polarization changes from pure RHCP at 0° azimuth angle to LHCP at 180°
azimuth angle, both at 0° elevation.

The toolbox lets you model a crossed-dipole antenna using the
phased.CrossedDipoleAntennaElement System object.
LHCP and RHCP Polarization Components

Plot the right-handed and left-handed circular polarization components at 1.5 GHz.

Create the phased.CrossedDipoleAntennaElement System object™.

fc = 1.5e9;

11 Using Polarization

11-24

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);

Compute the left-handed and right-handed circular polarization components.

az = [-180:180];

el = zeros(size(az));

resp = step(sCD,fc,[az;el]);

cfv = pol2circpol([resp.H.';resp.V.']);

clhp = cfv(1,:);

crhp = cfv(2,:);

Plot both circular polarization components at 0° elevation.

polar(az*pi/180.0,abs(clhp))

hold on

polar(az*pi/180.0,abs(crhp))

title('LHCP and RHCP vs Azithmuth Angle');

legend('LHCP','RHCP')

hold off

 Polarized Fields

11-25

Arrays Supporting Polarization

You can create polarized fields from arrays by using polarized antenna elements as a
value of the Elements property of an array System object. All Phased Array System
Toolbox arrays support polarization.

Scattering Cross-Section Matrix

After a polarized field is created by an antenna system, the field radiates to the far-
field region. When the field propagates into free space, the polarization properties
remain unchanged until the field interacts with a material substance which scatters
the field into many directions. In such situations, the amplitude and polarization of

11 Using Polarization

11-26

the scattered wave can differ from the incident wave polarization. The scattered wave
polarization may depend upon the direction in which the scattered wave is observed. The
exact way that the polarization changes depends upon the properties of the scattering
object. The quantity describing the response of an object to the incident field is called
the radar scattering cross-section matrix (RCSM), S. You can measure the scattering
matrix as follows. When a unit amplitude horizontally polarized wave is scattered, both
a horizontal and a vertical scattered component are produced. Call these two components
SHH and SVH. These components are complex numbers containing the amplitude and
phase changes from the incident wave. Similarly, when a unit amplitude vertically
polarized wave is scattered, the horizontal and vertical scattered component produced
are SHV and SVV. Because, any incident field can be decomposed into horizontal and
vertical components, you can arrange these quantities into a matrix and write the
scattered field in terms of the incident field

E

E

S S

S S

E

E

H

scat

V

scat

HH VH

HV VV

H

inc

V

i

()

()

()

(

È

Î

Í
Í

˘

˚

˙
˙

=
È

Î
Í

˘

˚
˙

4

2

p

l nnc

H

inc

V

inc
S

E

E
)

()

()

È

Î

Í
Í

˘

˚

˙
˙

= []
È

Î

Í
Í

˘

˚

˙
˙

4

2

p

l

In general, the scattering cross-section matrix depends upon the angles that the incident
and scattered fields make with the object. When the incident field is scattered back to the
transmitting antenna or, backscattered, the scattering matrix is symmetric.

Polarization Signature

To understand how the scattered wave depends upon the polarization of the incident
wave, you need to examine all possible scattered field polarizations for each incident
polarization. Because this amount of data is difficult to visualize, consider two cases:

• The scattered polarization has the same polarization as the incident field
(copolarization)

• The scattered polarization has orthogonal polarization to the incident field (cross-
polarization)

You can represent the incident polarizations in terms of the tilt angle-ellipticity angle
pair t e,() . Every unit incident polarization vector can be expressed as

E

E j

H
inc

V
inc

()

()

cos sin

sin cos

cos

sin

È

Î

Í
Í

˘

˚

˙
˙

=
-È

Î
Í

˘

˚
˙

È

Î
Í

t t

t t

e

e

˘̆

˚
˙

 Polarized Fields

11-27

while the orthogonal polarization vector is

E

E j

H
inc

V
inc

()

()

sin cos

cos sin

cos

si

^

^

È

Î

Í
Í

˘

˚

˙
˙

=
- -

-

È

Î
Í

˘

˚
˙

-

t t

t t

e

nn e

È

Î
Í

˘

˚
˙

To form the copolarization signature, use the RCSM matrix, S, to compute:

P E E S
E

E

co

H

inc

V

inc H

inc

V

inc

() () ()
*

()

()
= È

Î
˘
˚

È

Î

Í
Í

˘

˚

˙
˙

where []* denotes complex conjugation. For the cross-polarization signature, compute

P E E S
E

E

cross

H

inc

V

inc H

inc

V

inc

() () ()
*

()

()
= È

Î
˘
˚

È

Î

Í
Í

˘

˚

˙
˙

^ ^

You can compute both the copolarization and cross polarization signatures using the
polsignature function. This function returns the absolute value of the scattered
power (normalized by its maximum value). The next example shows how to plot the
copolarization signature for the RCSM matrix

S

i

i

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

2
1

2

1

2

for all possible incident polarizations. The range of values of the ellipticity angle and tilt
span the entire possible range of polarizations.

rscmat = [1i*2,0.5; 0.5, -1i];

el = [-45:45];

tilt = [-90:90];

11 Using Polarization

11-28

polsignature(rscmat,'c',el,tilt);

Alternatively, the code generates a plot of cross-polarizations for all incident
polarizations.

rscmat = [1i*2,0.5; 0.5,-1i];

el = [-45:45];

tilt = [-90:90];

polsignature(rscmat,'x',el,tilt);

 Polarized Fields

11-29

Polarization Loss Due to Field and Receiver Mismatch

An antenna that is used to receive polarized electromagnetic waves achieves its
maximum output power when the antenna polarization is matched to the polarization of
the incident electromagnetic field. Otherwise, there is polarization loss:

• The polarization loss is computed from the projection (or dot product) of the
transmitted field’s electric field vector onto the receiver polarization vector.

11 Using Polarization

11-30

• Loss occurs when there is a mismatch in direction of the two vectors, not in their
magnitudes.

• The polarization loss factor describes the fraction of incident power that has the
correct polarization for reception.

Using the transmitter’s spherical basis at the receiver’s position, you can represent the
incident electric field, (EiH, EiV), by

E e e P= + =E E E
iH iV V iH m

ˆ ˆ

You can represent the receiver’s polarization vector, (PH, PV), in the receiver’s local
spherical basis by:

P e e= ¢ + ¢P P
H VH V

ˆ ˆ

The next figure shows the construction of the transmitter and receiver spherical basis
vectors.

x

y

z

z'

y'

x'
êH

êV

el

az

ê'V

ê'H

el'

az'

r̂

r̂ '

Transmitter Coordinate System

Receiver Coordinate System

 Polarized Fields

11-31

The polarization loss is defined by:

r =
◊| |

| || |

E P

E P

i

i

2

2 2

and varies between 0 and 1. Because the vectors are defined with respect to different
coordinate systems, they must be converted to the global coordinate system to form the
projection. The toolbox function polloss computes the polarization mismatch between
an incident field and a polarized antenna.

To achieve maximum output power from a receiving antenna, the matched antenna
polarization vector must be the complex conjugate of the incoming field’s polarization
vector. As an example, if the incoming field is RHCP, with polarization vector given by

e e er x yi= -

1

2
() , the optimum receiver antenna polarization is LHCP. The introduction

of the complex conjugate is needed because field polarizations are described with respect
to its direction of propagation, whereas the polarization of a receive antenna is usually
specified in terms of the direction of propagation towards the antenna. The complex
conjugate corrects for the opposite sense of polarization when receiving.

As an example, if the transmitting antenna is transmits an RHCP field, the polarization
loss factors for various received antenna polarizations are

Receive Antenna
Polarization

Receive Antenna
Polarization Vector

Polarization Loss
Factor

Polarization Loss
Factor (dB)

Horizontal linear eH 1/2 3 dB
Vertical linear eV 1/2 3
RHCP

e e er x yi= -

1

2
()

0 ∞

LHCP
e e el x yi= +

1

2
()

1 0

Polarization Example

This example models a tracking radar based on a 31-by-31 (961-element) uniform
rectangular array (URA). The radar is designed to follow a moving target. At each

11 Using Polarization

11-32

time instant, the radar points in the known direction of the target. The basic radar
requirements are the probability of detection, pd, the probability of false alarm, pfa, the
maximum unambiguous range, max_range and the range resolution, range_res (all
distance units are in meters). The range_gate parameter limits the region of interest
to a range smaller than the maximum range. The operating frequency is set in fc. The
simulation lasts for numpulses pulses.

pd = 0.9; % Probability of detection

pfa = 1e-6; % Probability of false alarm

max_range = 1500*1000; % Maximum unambiguous range

range_res = 50.0; % Range resolution

rangegate = 5*1000; % Assume all objects are in this range

numpulses = 200; % Number of pulses to integrate

fc = 8e9; % Center frequency of pulse

c = physconst('LightSpeed');

tmax = 2*rangegate/c; % Time of echo from object at rangegate

Set the pulse repetition interval, PRI, and pulse repetition frequency, PRF, from the
maximum unambiguous range.

PRI = 2*max_range/c;

PRF = 1/PRI;

Set up the transmitted rectangular waveform using the phased.RectangularWaveform
System object. The waveform pulse width, pulse_width, and pulse bandwidth,
pulse_bw, are determined by the range resolution you select, range_res. Specify
the sampling rate, fs, to be twice the pulse bandwidth. The sampling rate must be an
integer multiple of the PRF. Therefore, modify the sampling rate to satisfy this condition.

pulse_bw = c/(2*range_res); % Pulse bandwidth

pulse_width = 1/pulse_bw; % Pulse width

fs = 2*pulse_bw; % Sampling rate

% fs must be an integer multiple of the PRF.

% Insure that this is true by modifying the sampling frequency.

n = ceil(fs/PRF);

fs = n*PRF;

sWav = phased.RectangularWaveform(...

 'PulseWidth',pulse_width,...

 'PRF',PRF,...

 'SampleRate',fs);

The array consists of short-dipole antenna elements. Using the
phased.ShortDipoleAntennaElement System object, create a short dipole antenna

 Polarized Fields

11-33

element oriented along the z-axis. The frequency response of the element is chosen to lie
in the range of 5-10 gigahertz.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[5e9,10e9],'AxisDirection','Z');

Define a 31-by-31 Taylor tapered uniform rectangular array using the phased.URA
System object. Set the size of the array using the number of rows, numRows, and the
number of columns, numCols. The distance between elements, d, is slightly smaller
than one-half the wavelength, lambda. Compute the array taper, tw, using separate
Taylor windows for the row and column directions. Obtain the Taylor weights using
the taylorwin function. Plot the 3-D array response using the array phased.URA/
plotResponse method.

numCols = 31;

numRows = 31;

lambda = c/fc;

d = 0.9*lambda/2; % Nominal spacing

wc = taylorwin(numCols);

wr = taylorwin(numRows);

tw = wr*wc';

sArray = phased.URA('Element',sSD,'Size',[numCols,numRows],...

 'ElementSpacing',[d,d],'Taper',tw);

plotResponse(sArray,fc,c,'Format','Polar','Polarization','V',...

 'RespCut','3D');

11 Using Polarization

11-34

Next, set the properties of the radar platform in the phased.Platform System object. The
radar is assumed to be stationary and positioned at the origin of the global coordinate
system. Set the Velocity property to [0,0,0] and the InitialPosition property to
[0,0,0]. Set the InitialOrientationAxes property to the identity matrix to align
the radar platform coordinate axes with the global coordinate system.

radarPlatformAxes = [1 0 0;0 1 0;0 0 1];

sRadarPlatform = phased.Platform('InitialPosition',[0;0;0],...

 'Velocity',[0;0;0]);

 Polarized Fields

11-35

In a radar system, the signal propagates in the form of an electromagnetic wave. The
signal is radiated and collected by the antennas used in the radar system. Associate the
array with a radiator phased.Radiator System object and two collector phased.Collector
System objects. Set the WeightsInputPort property of the radiator to true to
enable dynamic steering of the transmitted signal at each call of the radiator’s step
method. Creating the two collectors allows for collection of both horizontal and vertical
polarization components.

sRadiator = phased.Radiator(...

 'Sensor',sArray,...

 'OperatingFrequency',fc,...

 'PropagationSpeed',c,...

 'CombineRadiatedSignals',true,...

 'EnablePolarization',true,...

 'WeightsInputPort',true);

sCollector = phased.Collector(...

 'Sensor',sArray,...

 'OperatingFrequency',fc,...

 'PropagationSpeed',c,...

 'Wavefront','Plane',...

 'EnablePolarization',true,...

 'WeightsInputPort',false);

sCollector2 = phased.Collector(...

 'Sensor',sArray,...

 'OperatingFrequency',fc,...

 'PropagationSpeed',c,...

 'Wavefront','Plane',...

 'EnablePolarization',true,...

 'WeightsInputPort',false);

Estimate the peak power used in the phased.Transmitter System object to calculate
the desired radiated power levels. The transmitted peak power is the power required
to achieve a minimum-detection SNR, snr_min. You can determine the minimum SNR
from the probability of detection, pd, and the probability of false alarm, pfa, using the
albersheim function. Then, compute the peak power from the radar equation using
the radareqpow function. Among the inputs to this function are the overall signal gain,
which is the sum of the transmitting element gain, TransmitterGain and the array
gain, AG. Another input is the maximum detection range, rangegate. Finally, you need
to supply a target cross-section value, tgt_rcs. A scalar radar cross section is used in
this code section as an approximation even though the full polarization computation later
uses a 2-by-2 radar cross section scattering matrix.

snr_min = albersheim(pd, pfa, numpulses);

11 Using Polarization

11-36

AG = 10*log10(numCols*numRows);

tgt_rcs = 1; % Required target radar cross section

TransmitterGain = 20;

% Compute peak power per element

peak_power = radareqpow(lambda,rangegate,snr_min,...

 sWav.PulseWidth,...

 'RCS',tgt_rcs,...

 'Gain',TransmitterGain + AG);

% Create a transmitter object

sTX = phased.Transmitter(...

 'PeakPower',peak_power,...

 'Gain',TransmitterGain,...

 'LossFactor',0,...

 'InUseOutputPort',true,...

 'CoherentOnTransmit',true);

Create a rotating target object and a moving target platform. The rotating target is
represented later as an angle-dependent scattering matrix.

targetSpeed = 1000; % m/s

targetVec = [-1;1;0]/sqrt(2);

sTarget = phased.RadarTarget(...

 'EnablePolarization',true,...

 'Mode','Monostatic',...

 'ScatteringMatrixSource','Input port',...

 'OperatingFrequency',fc);

targetPlatformAxes = [1 0 0;0 1 0;0 0 1];

targetRotRate = 45; % degrees per sec

sTargetPlatform = phased.Platform(...

 'InitialPosition',[3500.0; 0; 0],...

 'Velocity', targetSpeed*targetVec);

Set up the following System objects

• a steering vector using phased.SteeringVector System object
• a beamformer using phased.PhaseShiftBeamformer System object. The

DirectionSource property is set to 'Input Port' to enable the beamformer to
always points towards the known target direction at each call to its step method.

• a free-space propagator using phased.FreeSpace System object
• a receiver preamp model using phased.ReceiverPreamp System object.

sSV = phased.SteeringVector('SensorArray',sArray,...

 'PropagationSpeed',c,...

 'IncludeElementResponse',false);

 Polarized Fields

11-37

% Create the receiving beamformer

sBF = phased.PhaseShiftBeamformer('SensorArray',sArray,...

 'OperatingFrequency',fc,'PropagationSpeed',c,...

 'DirectionSource','Input port');

% Define free space propagation channel

sFS = phased.FreeSpace(...

 'SampleRate',fs,...

 'TwoWayPropagation',true,...

 'OperatingFrequency',fc);

% Define a receiver with receiver noise

sRX = phased.ReceiverPreamp('Gain',20,...

 'LossFactor',0,...

 'NoiseFigure',1,...

 'ReferenceTemperature',290,...

 'SampleRate',fs,...

 'EnableInputPort',true,...

 'PhaseNoiseInputPort',false,...

 'SeedSource','Auto');

Allocate MATLAB arrays to store the processing results for later plotting.

sig_max_V = zeros(1,numpulses);

sig_max_H = zeros(1,numpulses);

tm_V = zeros(1,numpulses);

tm_H = zeros(1,numpulses);

After all the System objects are created, loop over the number of pulses to create the
reflected signals. Perform all the processing by invoking the step method for each
System object.

maxsamp = ceil(tmax*fs);

fast_time_grid = [0:(maxsamp-1)]/fs;

rotangle = 0.0;

for m = 1:numpulses

 x = step(sWav); % Generate pulse

 % Capture only samples within range gated

 x = x(1:maxsamp);

 [s, tx_status] = step(sTX,x); % Create transmitted pulse

 % Move the radar platform and target platform.

 [radarPos,radarVel] = step(sRadarPlatform,1/PRF);

 [targetPos,targetVel] = step(sTargetPlatform,1/PRF);

 % Compute the known target angle

 [targetRng,targetAng] = rangeangle(targetPos,...

 radarPos,...

 radarPlatformAxes);

11 Using Polarization

11-38

 % Compute the radar angle with respect to the target axes.

 [radarRng,radarAng] = rangeangle(radarPos,...

 targetPos,...

 targetPlatformAxes);

 % Calculate the steering vector designed to track the target

 sv = step(sSV,fc,targetAng);

 % Radiate the polarized signal toward the targat

 tsig1 = step(sRadiator,...

 s,...

 targetAng,...

 radarPlatformAxes,...

 conj(sv));

 % Compute the two-way propagation loss (4*pi*R/lambda)^2

 tsig2 = step(sFS,...

 tsig1,...

 radarPos,...

 targetPos,...

 radarVel,...

 targetVel);

 % Create a very simple model of a changing scattering matrix

 scatteringMatrix = [cosd(rotangle),0.5*sind(rotangle);...

 0.5*sind(rotangle),cosd(rotangle)];

 rsig1 = step(sTarget,...

 tsig2,...

 radarAng,...

 targetPlatformAxes,...

 scatteringMatrix); % Reflect off target

 % Collect the vertical component of the radiation.

 rsig3V = step(sCollector,...

 rsig1,...

 targetAng,...

 radarPlatformAxes);

 % Collect the horizontal component of the radiation. This

 % second collector is rotated around the x-axis to be more

 % sensitive to horizontal polarization

 rsig3H = step(sCollector2,...

 rsig1,...

 targetAng,...

 rotx(90)*radarPlatformAxes);

 % Add receiver noise to both sets of signals

 rsig4V = step(sRX,rsig3V,~(tx_status>0)); % Receive signal

 rsig4H = step(sRX,rsig3H,~(tx_status>0)); % Receive signal

 % Beamform the signal

 rsigV = step(sBF,rsig4V,targetAng); % Beamforming

 Polarized Fields

11-39

 rsigH = step(sBF,rsig4H,targetAng); % Beamforming

 % Find the maximum returns for each pulse and store them in

 % a vector. Store the pulse received time as well.

 [sigmaxV,imaxV] = max(abs(rsigV));

 [sigmaxH,imaxH] = max(abs(rsigH));

 sig_max_V(m) = sigmaxV;

 sig_max_H(m) = sigmaxH;

 tm_V(m) = fast_time_grid(imaxV) + (m-1)*PRI;

 tm_H(m) = fast_time_grid(imaxH) + (m-1)*PRI;

 % Update the orientation of the target platform axes

 targetPlatformAxes = ...

 rotx(PRI*targetRotRate)*targetPlatformAxes;

 rotangle = rotangle + PRI*targetRotRate;

end

Plot the vertical and horizontal polarization for each pulse as a function of time.

figure(2);

plot(tm_V,sig_max_V,'.'); hold on;

plot(tm_H,sig_max_H,'r.'); hold off;

xlabel('Time (sec)')

ylabel('Amplitude');

title('Vertical and Horizontal Polarization Components');

legend('Vertical','Horizontal');

grid on;

11 Using Polarization

11-40

12

Antenna and Array Definitions

12 Antenna and Array Definitions

12-2

Element and Array Radiation and Response Patterns

In this section...

“Element Response and Radiation Patterns” on page 12-2
“Array Response and Radiation Patterns” on page 12-6
“Create Grating Lobe Diagram for Microphone URA” on page 12-10

Element Response and Radiation Patterns

Antennas and acoustic transducers create radiated fields which propagate outwards
into space or into the air and water for acoustics. Conversely, antennas and transducers
react to impinging fields to produce output voltages. The electromagnetic fields created
by an antenna, or the acoustic field created by a transducer (called a speaker in speech
acoustics or hydrophone in ocean acoustics), depend on the distance from the sources and
the direction specified by angular coordinates. The terms response pattern and radiation
pattern are often used interchangeably but the term radiation pattern is mostly used to
describe the field radiated by an element and the term response pattern is mostly used
to describe the output of the antenna with respect to impinging wave field as a function
of wave direction. By the principle of reciprocity, these two patterns are identical. When
discussing the generation of the patterns, it is conceptually easier to think in terms of
radiation patterns.

In radar and sonar applications, the interactions between fields and targets take place in
the far-field region, often called the Fraunhofer region. The far-field region is defined as
the region for which
r≫λ2/L
where L represents the largest dimension of the source. In the far-field region, the fields
take a special form: they can be written as the product of a function of direction (such
as azimuth and elevation angles) and a geometric fall-off function, 1/r. It is the angular
function that is called the radiation pattern, response pattern, or simply pattern.

Radiation patterns can be viewed as field patterns or as power patterns. We shall
often add the term “field” or “power” to be more specific: contrast element field pattern
versus element power pattern. The radiation power pattern describes the field's radiant
intensity as a function of direction. Power units are watts/steradian.

 Element and Array Radiation and Response Patterns

12-3

Element field patterns

The element field response or element field pattern represents the angular distribution of
the electromagnetic field create by an antenna, E(θ,φ), or the scalar acoustic field, p(θ,φ),
generated by an acoustic transducer such as a speaker or hydrophone. Because the far
field electromagnetic field consists of horizontal and vertical components orthogonal,
(EH(θ,φ), EV(θ,φ)) there may be different patterns for each component. Acoustic fields are
scalar fields so there is only one pattern. The general form of any field or field component
is

Af
e

r

ikr

(,)q f
-

where A is a nominal field amplitude and f(θ,φ) is the normalized field pattern
(normalized to unity). Because the field patterns are evaluated at some reference
distance from the source, the fields returned by the element’s step method are
represented simply as A f(θ,φ). You can display the nominal element field pattern by
invoking the element's pattern method, choosing 'Type' parameter value as 'efield'
and setting the 'Normalize' parameter to false

pattern(elem,'Normalize', false,'Type','efield');

You can view the normalized field pattern by setting the 'Normalize' parameter
value to true. For example, if EH(θ,φ) is the horizontal component of the complex
electromagnetic field, its normalized field pattern is given by |EH(θ,φ)|/EH,max|.

pattern(elem,'Polarization','H','Normalize', true,'Unit''Type','efield');

Element power patterns

The element power response (or element power radiation pattern) is defined as the angular
distribution of the radiant intensity in the far field, Urad(θ,φ). When the elements are
used for reception, the patterns are interpreted as the sensitivity of the element to
radiation arriving from direction (θ,φ) and the power pattern represents the output
voltage power of the element as a function of wave arrival direction.

Physically, the radiant intensity for the electromagnetic field produced by an antenna
element is given by

U
r

Z
E Erad H V(,) | | | |q f = +()

2

0

2 2

2

12 Antenna and Array Definitions

12-4

where Z0 is the characteristic impedance of free space. The radiant intensity of an
acoustic field is given by

U
r

Z
prad (,) | |q f =

2
2

2

where Z is the characteristic impedance of the acoustic medium. For the fields produced
by the Phased Array System Toolbox element System objects, the radial dependence,
the impedances and field magnitudes are all collected in the nominal field amplitudes
defined above. Then the radiant intensity can generally be written

U Afrad (,) | (,)|q f q f= 2

The radiant intensity pattern is the quantity returned by the elements pattern method
when the 'Normalize' parameter is set to false and the 'Type' parameter is set to
'power' (or 'powerdb' for decibels).

pattern(elem,'Normalize',false,'Type','power');

The normalized power pattern is defined as the radiant intensity divided by its maximum
value

U
U

U
fnorm

rad

rad max

(,)
(,)

| (,)|
,

q f
q f

q f= = 2

The pattern method returns a normalized power pattern when the 'Normalize'
parameter is set to true and the 'Type' parameter is set to 'power' (or 'powerdb' for
decibels).

pattern(elem,'Normalize',true,'Type','power');

Element directivity

Element directivity measures the capability of an antenna or acoustic transducer to
radiate or receive power preferentially in a particular direction. Sometimes it is referred
to as directive gain. Directivity is measured by comparing the transmitted radiant
intensity in a given direction to the radiant intensity transmitted by an isotropic radiator
with the same total transmitted power. An isotropic radiator radiates equal power in
all directions. The radiant intensity of an isotropic radiator is just the total transmitted
power divided by the solid angle of a sphere, 4π,

 Element and Array Radiation and Response Patterns

12-5

U
P

rad
iso total(,)q f

p
=

4

The element directivity is defined to be

D
U

U

U

P

rad

rad
iso

rad

total

(,)
(,) (,)

q f
q f

p
q f

= = 4

By this definition, the integral of the directivity over a sphere surrounding the element is
exactly 4π. Directivity is related to the effective beamwidth of an element. Start with an
ideal antenna that has a uniform radiation field over a small solid angle (its beamwidth),
ΔΩ, in a particular direction, and zero outside that angle. The directivity is

D
U

P

rad

total

(,)
(,)

q f p
q f p

= =4
4

DW

The greater the directivity, the smaller the beamwidth.

The radiant intensity can be expressed in terms of the directivity and the total power

U D Prad total(,) (,)q f
p

q f=
1

4

As an example, the directivity of the electric field of a z-oriented short-dipole antenna
element is given by

D(,) cosq f q=
3

2

2

Often, the largest value of D(θ,φ) is specified as an antenna operating parameter. The
direction in which D(θ,φ) is largest is the direction of maximum power radiation. This
direction is often called the boresight direction. In some of the literature, the maximum
value itself is called the directivity, reserving the phrase directive gain for what is called
here directivity. For the short-dipole antenna, the maximum value of directivity occurs
at θ = 0, independent of φ, and attains a value of 3/2. The concept of directivity applies
to receiving antennas as well. It describes the output power as a function of the arrival

12 Antenna and Array Definitions

12-6

direction of a plane wave impinging upon the antenna. By reciprocity, the directivity of
a receiving antenna is the same as that for a transmitting antenna. A quantity closely
related to directivity is element gain. The definition of directivity assumes that all the
power fed to the element is radiated to space. In reality, system losses reduce the radiant
intensity by some factor, the element efficiency, η. The term Ptotal becomes the power
supplied to the antenna and Prad becomes the power actually radiated into space. Then,
Prad = ηPtotal. The element gain is defined by

G
U

P

U

P
Drad

total

rad

rad

(,)
(,) (,)

(,)q f p
q f

ph
q f

h q f= = =4 4

and represents the power radiated away from the element compared to the total power
supplied to the element.

Using the element’s pattern method, you can plot the directivity of an element by
setting the 'Type' parameter to 'directivity',

pattern(elem,'Type','directivity');

Array Response and Radiation Patterns

Array magnitude and power patterns

When individual antenna elements are aggregated into arrays of elements, new response/
radiation patterns are created which depend upon both the element patterns and the
geometry of the array. These patterns are called beampatterns to reflect the fact that
the pattern may be constructed to have a very narrow angular distribution, i.e. a beam.
This term is used for an array in transmitting or receiving modes. Most often, but not
always, the array consists of identical antennas. The identical antenna case is interesting
because it lets us partition the radiation pattern into two components: one component
describes the element radiation pattern and the second describes the array radiation
pattern.

Just as an array of transmitting elements has a radiation pattern, an array of receiving
elements has a response pattern which describes how the output voltage of the array
changes with the direction of arrival of an plane incident wave. By reciprocity, the
response pattern is identical to the radiation pattern.

For transmitting arrays, the voltage driving the elements may be phase-adjusted to
allow the maximum radiant intensity to be transmitted in a particular direction. For

 Element and Array Radiation and Response Patterns

12-7

receiving arrays, the arriving signals may be phase adjusted to maximize the sensitivity
in a particular direction.

Start with a simple model of the radiation field produced by a single antenna which is
given by

y r Af
e

r

ikr

(, ,) (,)q f q f=
-

where A is the field amplitude and f((θ,φ) is the normalized element field pattern. This
field may represent any of the components of the electric field, a scalar field, or an
acoustic field. For an array of identical elements, the output of the array is the weighted
sum of the individual elements, using the complex weights, wm

z r A w f
e

rm
m

M ikr

m

m

(, ,) (,)*q f q f=
=

- -

Â
0

1

where rm is the distance from the mth element source point to the field point. In the far-
field region, this equation takes the form

z r A
e

r
f w e

ikr

m
m

M
ik m(, ,) (,) * •q f q f=

-

=

-
-Â

0

1
u x

where xm are the vector positions of the array elements with respect to the array origin.
u is the unit vector from the array origin to the field point. This equation can be written
compactly is the form

z r A
e

r
f

ikr
H(, ,) (,)q f q f=

-

w s

The term wHs is called the array factor, Farray(θ,φ). The vector s is the steering vector (or
array manifold vector) for directions of propagation for transmit arrays or directions of
arrival for receiving arrays

s
u x(,) { , , }•q f = º ºe

ik
m

12 Antenna and Array Definitions

12-8

The total array pattern consists of an amplitude term, an element pattern, f(θ,φ), and an
array factor, Farray(θ,φ). The total angular behavior of the array pattern, B(θ,φ), is called
the beampattern of the array

z r A
e

r
f A

e

r
f F A

e

r

ikr
H

ikr

array

ikr

(, ,) (,) (,) (,)q f q f q f q f= = =
- - -

w s BB(,)q f

When evaluated at the reference distance, the array field pattern has the form

Af Af F ABH
array(,) (,) (,) (,)q f q f q f q fw s = =

The pattern method, when the 'Normalize' parameter is set to false and the
'Type' parameter is set to 'efield', returns the magnitude of the array field pattern
at the reference distance.

pattern(array,'Normalize',false,'Type','efield');

When the 'Normalize' parameter is set to true, the pattern method returns a
pattern normalized to unity.

pattern(array,'Normalize',true,'Type','efield');

The array power pattern is given by

| (,) | | (,) (,)| | (,)|Af Af F ABH
arrayq f q f q f q fw s

2 2 2= =

The pattern method, when the 'Normalize' parameter is set to false and the
'Type' parameter is set to 'power' or 'powerdb', returns the array power pattern at
the reference distance.

pattern(array,'Normalize',false,'Type','power');

When the 'Normalize' parameter is set to true, the pattern method returns the
power pattern normalized to unity.

pattern(array,'Normalize',true,'Type','power');

For the conventional beamformer, the weights are chosen to maximize the power
transmitted towards a particular direction, or in the case of receiving arrays, to maximize
the response of the array for a particular arrival direction. If u0 is the desired pointing

 Element and Array Radiation and Response Patterns

12-9

direction, then the weights which maximize the power and response in this direction
have the general form

w
u x

=
-| | •

w em
ik

m0

For these weights, the array factor becomes

F w earray
m

M

m
ik m(,) | | ()•q f =

=

-
- -Â

0

1
0u u x

which has a maximum at u = u0.

Array directivity

Array directivity is defined the same way as element directivity: the radiant intensity
in a specific direction divided by the isotropic radiant intensity. The isotropic radiant
intensity is the array’s total radiated power divided by 4π. In terms of the arrays weights
and steering vectors, the directivity can be written as

D
Af

P

H

total

(,)
| (,) |

q f p
q f

= 4
2

w s

where Ptotal is the total radiated power from the array. In a discrete implementation, the
total radiated power can be computed by summing intensity values over a uniform grid of
angles that covers the full sphere surrounding the array

P
MN

Aftotal
n

N

m

M

m n
H

m n m=
=

-

=

-

ÂÂ
2 2

0

1

0

1
2p

q f q f q| (,) (,)| cosw s

where M is the number of elevation grid points and N is the number of azimuth grid
points.

Because the radiant intensity is proportional to the beampattern, B(θ,φ), the directivity
can also be written in terms of the beampattern

12 Antenna and Array Definitions

12-10

D
B

B d d

(,)
| (,)|

| (,)| cos
q f p

q f

q f q q f
=

Ú
4

2

2

You can plot the directivity of an array by setting the 'Type' parameter of the pattern
methods to 'directivity',

pattern(array,'Type','directivity');

Array gain

In the Phased Array System Toolbox, array gain is defined to be the array SNR gain.
Array gain measures the improvement in SNR of a receiving array over the SNR for a
single element. Because an array is a spatial filter, the array SNR depends upon the
spatial properties of the noise field. When the noise is spatially isotropic, the array gain
takes a simple form

G
array

element

H

H
= =

SNR

SNR

| |w s

w w

2

In addition, for an array with uniform weights, the array gain for an N-element array
has a maximum value at boresight of N, (or 10logN in db).

Create Grating Lobe Diagram for Microphone URA

Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having
element spacing equal to one-half wavelength.

Assume the operating frequency of the array is 10 kHz. All elements are omnidirectional
microphone elements. Steer the array in the direction 20 degrees in azimuth and 30
degrees in elevation. The speed of sound in air is 344.21 m/s at 21 deg C.

cair = 344.21;

f = 10000;

lambda = cair/f;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20000]);

sURA = phased.URA('Element',sMic,'Size',[11,9],...

 'ElementSpacing',0.5*lambda*[1,1]);

plotGratingLobeDiagram(sURA,f,[20;30],cair);

 Element and Array Radiation and Response Patterns

12-11

Plot the grating lobes. The main lobe of the array is indicated by a filled black circle. The
grating lobes in visible and nonvisible regions are indicated by unfilled black circles. The
visible region is the region in u-v coordinates for which u2 + v2 ≤ 1. The visible region is
shown as a unit circle centered at the origin. Because the array spacing is less than one-
half wavelength, there are no grating lobes in the visible region of space. There are an
infinite number of grating lobes in the nonvisible regions, but only those in the range
[-3,3] are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe
for which there are no grating lobes in the visible region. In this case, it coincides with
the visible region.

The white areas of the diagram indicate a region where no grating lobes are possible.

13

Code Generation

• “Code Generation” on page 13-2
• “Generate MEX Function to Estimate Directions of Arrival” on page 13-12
• “Generate MEX Function Containing Persistent System Objects ” on page 13-15
• “Functions and System Objects Supported for C/C++ Code Generation” on page

13-18

13 Code Generation

13-2

Code Generation
In this section...

“Code Generation Use and Benefits” on page 13-2
“Limitations Specific to Phased Array System Toolbox” on page 13-3
“General Limitations” on page 13-6
“Limitations for System Objects that Require Dynamic Memory Allocation” on page
13-11

Code Generation Use and Benefits

You can use the Phased Array System Toolbox software together with the MATLAB
Coder™ product to create C/C++ code that implements your MATLAB functions and
models. With this software, you can

• Create a MEX file to speed up your own MATLAB application.
• Generate a stand-alone executable that runs independently of MATLAB on your own

computer or another platform.
• Include System objects in the same way as any other element.

In general, the code you generate using the toolbox is portable ANSI® C code. In order
to use code generation, you need a MATLAB Coder license. Using Phased Array System
Toolbox software requires licenses for both the DSP System Toolbox™ and the Signal
Processing Toolbox™. See the “Getting Started with MATLAB Coder” page for more
information.

Creating a MATLAB Coder MEX-file can lead to substantial acceleration of your
MATLAB algorithms. It is also a convenient first step in a workflow that ultimately leads
to completely standalone code. When you create a MEX-file, it runs in the MATLAB
environment. Its inputs and outputs are available for inspection just like any other
MATLAB variable. You can use MATLAB’s visualization, and other tools, for verification
and analysis.

Within your code, you can run specific commands either as generated C code or by
running using the MATLAB engine. In cases where an isolated command does not yet
have code generation support, you can use the coder.extrinsic command to embed
the command in your code. This means that the generated code reenters the MATLAB
environment when it needs to run that particular command. This also useful if you wish
to embed certain commands that cannot generate code (such as plotting functions).

 Code Generation

13-3

The simplest way to generate MEX-files from your MATLAB code is by using the
codegen function at the command line. Often, generating a MEX-files involves nothing
more than invoking the coder command on one of your existing functions. For example,
if you have an existing function, myfunction.m, you can type the commands at the
command line to compile and run the MEX function. codegen adds a platform-specific
extension to this name. In this case, the “mex” suffix is added.

codegen myfunction.m

myfunction_mex;

You can generate standalone executables that run independently of the MATLAB
environment. You can do this by creating a MATLAB Coder project inside the MATLAB
Coder Integrated Development Environment (IDE). Alternatively, you can issue the
codegen command in the command line environment with appropriate configuration
parameters. To create a standalone executable, you must write your own main.c or
main.cpp function. See “C/C++ Code Generation” for more information.

Set Up Your Compiler

Before using codegen to compile your code, you must set up your C/C++ compiler. For
32-bit Windows platforms, MathWorks® supplies a default compiler with MATLAB. If
your installation does not include a default compiler, you can supply your own compiler.
For the current list of supported compilers, see Supported and Compatible Compilers
on the MathWorks Web site. Install a compiler that is suitable for your platform. Then,
read “Setting Up the C or C++ Compiler”. After installation, at the MATLAB command
prompt, run mex -setup. You can then use the codegen function to compile your code.

Functions and System Objects That Support Code Generation

Almost all Phased Array System Toolbox functions and System objects are supported for
code generation. For a list of supported functions and System objects, see “Functions and
System Objects Supported for C/C++ Code Generation” on page 13-18.

Limitations Specific to Phased Array System Toolbox

Code Generation has the following limitations when used with the Phased Array System
Toolbox software:

• Passing arguments with variable-sized dimensions into any Phased Array System
Toolbox function or System object step method is not supported.

• When you employ antennas and arrays that produce polarized fields,
the EnablePolarization parameter for the phased.Collector,

http://www.mathworks.com/support/compilers/current_release/

13 Code Generation

13-4

phased.Radiator, and phased.WidebandCollector, phased.RadarTarget,
phased.BackscatterRadarTarget, phased.ArrayResponse, and
phased.SteeringVector System objects must be set to true. This requirement differs
from regular MATLAB usage where you can set EnablePolarization property to
false even when polarization is enabled. For example, this code uses a polarized
antenna, which requires that EnablePolarization property of the phased.Radiator
System object be set to true.

function [y] = codegen_radiator()

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');

c = physconst('LightSpeed');

fc = 200e6;

lambda = c/fc;

d = lambda/2;

sURA = phased.URA('Element',sSD,...

 'Size',[3,3],...

 'ElementSpacing',[d,d]);

sRad = phased.Radiator('Sensor',sURA,...

 'OperatingFrequency',150e6,...

 'CombineRadiatedSignals',true,...

 'EnablePolarization',true);

x = [1;2;1];

radiatingAngle = [10;0]; % One angle for one antenna

y = step(sRad,x,radiatingAngle,eye(3,3));

• Visualization methods for Phased Array System Toolbox System objects are not
supported. These methods are pattern, patternAzimuth, patternElevation,
plot, plotResponse, and viewArray.

• When a System object contains another System object as a property value, you must
set the contained System object in the constructor. You cannot use Object.Property
notation to set the property. For example

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');

sURA = phased.URA('Element',sSD,...

 'Size',[3,3],...

 'ElementSpacing',[0.75,0.75]);

is valid for codegen but

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');

sURA = phased.URA('Size',[3,3],...

 Code Generation

13-5

 'ElementSpacing',[0.75,0.75]);

sURA.Element = sSD;

is not.
• Code generation of Phased Array System Toolbox arrays that contain Antenna

Toolbox™ antennas is not supported.
• A list of the limitations on Phased Array System Toolbox functions and System

objects is presented here:

Function or System Object Limitation

plotResponse This System object method is not
supported.

pattern This System object method is not
supported.

patternAzimuth This System object method is not
supported.

patternElevation This System object method is not
supported.

plot This System object method is not
supported.

viewArray This System object method is not
supported.

blakechart This function is not supported.
polsignature Supported only when output arguments

are specified.
rocpfa The NonfluctuatingNoncoherent

signal type is not supported.
rocsnr The NonfluctuatingNoncoherent

signal type is not supported.
stokes Supported only when output arguments

are specified.
phased.ArrayGain This System object cannot be

used with arrays containing
polarized antenna elements, that is,

13 Code Generation

13-6

Function or System Object Limitation

phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement

phased.HeterogeneousConformalArray This System object is not supported.
phased.HeterogeneousULA This System object is not supported.
phased.HeterogeneousURA This System object is not supported.
phased.IntensityScope This System object is not supported.
phased.MatchedFilter The CustomSpectrumWindow property is

not supported.
phased.RangeDopplerResponse The CustomRangeWindow and the

CustomDopplerWindow properties are
not supported.

phased.ScenarioViewer

General Limitations

Code Generation has some general limitations not specifically related to the Phased
Array System Toolbox software. For a more complete discussion, see “System Objects in
MATLAB Code Generation”.

• You cannot use cell arrays in your code.
• The data type and complexity (i.e., real or complex) of any input argument to a

function or System object must always remain the same.
• You cannot pass a System object to any method or function that you made extrinsic

using coder.extrinsic.
• You cannot load a MAT-file using coder.load when it contains a System object. For

example, if you construct a System object in the MATLAB environment and save it to
a MAT-file

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');

save x.mat sSD;

clear sSD;

then you cannot load the System object in your compiled MEX-file:

function codegen_load1()

W = coder.load('x.mat');

 Code Generation

13-7

sSD = W.sSD;

The compilation

codegen codegen_load1

will produced an error message: ‘Found unsupported class for
variable using function 'coder.load'. MATLAB class

'phased.ShortDipoleAntennaElement' found at 'W.sSD' is

unsupported.’

To avoid this problem, you can save the object's properties to a MAT-file, then, use
coder.load to load the object properties and re-create the object. For example,
create and save a System object’s properties in the MATLAB environment

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');

FrequencyRange = sSD.FrequencyRange;

AxisDirection = sSD.AxisDirection;

save x.mat FrequencyRange AxisDirection;

Then, write a function codegen_load2 to load the properties and create a System
object.

function codegen_load2()

W = coder.load('x.mat');

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',W.FrequencyRange,...

 'AxisDirection',W.AxisDirection);

Then, issue the commands to create and execute the MEX-file, codegen_load2_mex.

codegen codegen_load2;

codegen_load2_mex

• System object properties are either tunable or nontunable. Unless otherwise specified,
System object properties are nontunable. Nontunable properties must be constant.
A constant is a value that can be evaluated at compile-time. You can change tunable
properties even if the object is locked. Refer to the object's reference page to determine
whether an individual property is tunable or not. If you try to set a nontunable
System object property and the compiler determines that it is not constant, you will
get an error. For example, the phased.URA System object has a nontunable property,
ElementSpacing, which sets the distance between elements. You may want to create
an array that is tuned to a frequency. You cannot pass in the frequency as an input
argument because the frequency must be a constant.

13 Code Generation

13-8

function [resp] = codegen_const1(fc)

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');

c = physconst('LightSpeed');

lambda = c/fc;

d = lambda/2;

sURA = phased.URA('Element',sSD,...

 'Size',[3,3],...

 'ElementSpacing',[d,d]);

ang = [30;0];

resp = step(sURA,fc,ang);

When you codegen this function

fc = 200e6;

codegen codegen_const1 -args {fc}

the compiler responds that the value of the 'ElementSpacing' property, d, is not
constant and generates the error message: "Failed to compute constant value
for nontunable property 'ElementSpacing'. In code generation,

nontunable properties can only be assigned constant values." It is
not constant because it depends upon a non-constant variable, fc.

To correct this problem, set fc to a constant within the function:

function [resp] = codegen_const2()

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');

c = physconst('LightSpeed');

fc = 200e6;

lambda = c/fc;

d = lambda/2;

sURA = phased.URA('Element',sSD,...

 'Size',[3,3],...

 'ElementSpacing',[d,d]);

ang = [30;0];

resp = step(sURA,fc,ang);

and then compile

codegen codegen_const2

 Code Generation

13-9

• You can assign a nontunable System object property value only once before a step
method is executed. This requirement differs from MATLAB usage where you can
initialize these properties multiple times before the step method is executed.

This example sets the Size property twice.

function codegen_property

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[0.9e8,2e9],'AxisDirection','Y');

sURA = phased.URA('Element',sSD,...

 'Size',[3,3],...

 'ElementSpacing',[0.15,0.15]);

sURA.Size = [4,4];

When you issue the command

codegen codegen_property

the following error message is produced: "A nontunable property may only be
assigned once."

• In certain cases, the compiler cannot determine the values of nontunable properties
at compile time or the code may not even compile. Consider the following example
that reads in the x,y,z-coordinates of a 5-element array from a file and then, creates
a conformal array System object. The text file, elempos.txt, contains the element
coordinates

-0.5000 -0.2588 0 0.2588 0.5000

-0.8660 -0.9659 -1.0000 -0.9659 -0.8660

 0 0 0 0 0

The file collectWave.m contains reads the element coordinates and creates the
object.

function y = collectWave(angle)

elPos = calcElPos;

cArr = phased.ConformalArray('ElementPosition',elPos);

y = collectPlaneWave(cArr,randn(4,2),angle,1e8);

end

function elPos = calcElPos

fid = fopen('elempos.txt','r');

el = textscan(fid, '%f');

n = length(el{1});

nelem = n/3;

13 Code Generation

13-10

fclose(fid);

elPos = reshape(el{1},nelem,3).';

end

Attempting to compile

codegen collectWave -args {[10 30]}

produces the error "Permissions 'r' and 'r+' are not supported".

The following example is a work-around that uses coder.extrinsic
and coder.const to insure that the value for the nontunable property,
'ElementPosition', is a compile time constant. The function in the file,
collectWave1.m, creates the object using the calcElPos function. This function
runs inside the MATLAB interpreter at compile time.

function y = collectWave1(angle)

coder.extrinsic('calcElPos')

elPos = coder.const(calcElPos);

cArr = phased.ConformalArray('ElementPosition',elPos);

y = collectPlaneWave(cArr,randn(4,2),angle,1e8);

end

The file calcElPos.m loads the element positions from the text file

function elPos = calcElPos

fid = fopen('elempos.txt','r');

el = textscan(fid, '%f');

n = length(el{1});

nelem = n/3;

fclose(fid);

elPos = reshape(el{1},nelem,3).';

Only the collectWave1.m file is compiled with codegen. Compiling and running

codegen collectWave1 -args {[10 30]}

collectWave1_mex([10,30])

will succeed.

An alternate work-around uses coder.load to insure that the value of the
nontunable property 'ElementPosition' is compile-time constant. In the
MATLAB environment, run calcElPos2 to save the array coordinates contained
in elempos.txt to a MAT-file. Then, load the contents of the MAT-file within the
compiled code.

function calcElPos2

 Code Generation

13-11

fid = fopen('elempos.txt');

el = textscan(fid, '%f');

fclose(fid);

elPos = reshape(el{1},[],3).';

save('positions', 'elPos');

end

The file collectWave2.m loads the coordinate positions and creates the conformal
array object

function y = collectWave2(angle)

var = coder.load('positions');

cArr = phased.ConformalArray('ElementPosition',var.elPos);

y = collectPlaneWave(cArr,randn(4,2),angle,1e8);

end

Only the collectWave2.m file is compiled with codegen. Compiling and running
collectWave2.m

codegen collectWave2 -args {[10 30]}

collectWave2_mex([10,30])

will succeed. This second approach is more general than the first since a MAT-file can
contain any variables, except System objects.

• The System object clone method is not supported.

Limitations for System Objects that Require Dynamic Memory Allocation

System objects that require dynamic memory allocation cannot be used for code
generation in the following cases:

Inside a MATLAB Function block in a Simulink® model.

Inside a MATLAB function in a Stateflow® chart.
When using MATLAB as the action language in a Stateflow chart.
Inside a Truth Table block in a Simulink model.
Inside a MATLAB System block (except for normal mode).
When using Simulink Coder for code generation.
When using MATLAB Coder for code generation and dynamic memory allocation is
disabled.

13 Code Generation

13-12

Generate MEX Function to Estimate Directions of Arrival
Compile, using codegen, the function EstimateDOA.m. This function estimates the
directions-of-arrival (DOA’s) of two signals with added noise that are received by a
standard 10-element Uniform Line Array (ULA). The antenna operating frequency is 150
MHz and the array elements are spaced one-half wavelength apart. The actual direction
of arrival of the first signal is 10° azimuth, 20° elevation. The direction of arrival of the
second signal is 45° azimuth, 60° elevation. Signals and noise are generated using the
sensorsig function.

function [az] = EstimateDOA()

% Example:

% Estimate the DOAs of two signals received by a standard

% 10-element ULA with element spacing one half-wavelength apart.

% The antenna operating frequency is 150 MHz.

% The actual direction of the first signal is 10 degrees in

% azimuth and 20 degrees in elevation. The direction of the

% second signal is 45 degrees in azimuth and 60 degrees in

% elevation.

c = physconst('LightSpeed');

fc = 150e6;

lambda = c/fc;

fs = 8000;

nsamp = 8000;

sigma = 0.1;

ang = [10 20; 45 60]';

sIso = phased.IsotropicAntennaElement('FrequencyRange',[100e6,300e6]);

sULA = phased.ULA('Element',sIso,'NumElements',10,'ElementSpacing',lambda/2);

pos = getElementPosition(sULA)/lambda;

sig = sensorsig(pos,nsamp,ang,sigma^2);

sDOA = phased.RootMUSICEstimator('SensorArray',sULA,...

 'OperatingFrequency',fc,...

 'NumSignalsSource','Property','NumSignals',2);

doas = step(sDOA,sig);

az = broadside2az(sort(doas),[20,60]);

end

Run codegen at the command line to generate the mex function, EstimateDOA_mex,
and then run the mex function:

codegen EstimateDOA.m

EstimateDOA_mex

The estimated arrival angles are:

 Generate MEX Function to Estimate Directions of Arrival

13-13

az =

 10.0036 45.0030

The program contains a fixed value for the noise variance. If you wanted to reuse the
same code for different noise levels, you can pass the noise variance as an argument into
the function. This is done in the function EstimateDOA1.m, shown here, which has the
input argument sigma.

function [az] = EstimateDOA1(sigma)

% Example:

% Estimate the DOAs of two signals received by a standard

% 10-element ULA with element spacing one half-wavelength apart.

% The antenna operating frequency is 150 MHz.

% The actual direction of the first signal is 10 degrees in

% azimuth and 20 degrees in elevation. The direction of the

% second signal is 45 degrees in azimuth and 60 degrees in

% elevation.

c = physconst('LightSpeed');

fc = 150e6;

lambda = c/fc;

fs = 8000;

nsamp = 8000;

ang = [10 20; 45 60]';

sIso = phased.IsotropicAntennaElement('FrequencyRange',[100e6,300e6]);

sULA = phased.ULA('Element',sIso,'NumElements',10,'ElementSpacing',lambda/2);

pos = getElementPosition(sULA)/lambda;

sig = sensorsig(pos,nsamp,ang,sigma^2);

sDOA = phased.RootMUSICEstimator('SensorArray',sULA,...

 'OperatingFrequency',fc,...

 'NumSignalsSource','Property','NumSignals',2);

doas = step(sDOA,sig);

az = broadside2az(sort(doas),[20,60]);

Run codegen at the command line to generate the mex function, EstimateDOA1_mex,
using the -args option to specify the type of input argument. Then run the mex function
with several different input parameters:

codegen EstimateDOA1.m -args {1}

EstimateDOA1_mex(1)

az =

 10.0130 45.0613

EstimateDOA1_mex(10)

az =

13 Code Generation

13-14

 10.1882 44.3327

EstimateDOA1_mex(15)

az =

 8.1620 46.2440

Increasing the value of sigma degrades the estimates of the azimuth angles.

 Generate MEX Function Containing Persistent System Objects

13-15

Generate MEX Function Containing Persistent System Objects

Sometimes, it is convenient to put System objects inside a function that is to be called
many times. This eliminates the overhead in creating new instances of a System object
each time the function is called. You can write logic which creates the System object just
once and declares it to be persistent. For example, suppose you require the response
of an 11-element ULA for several different arrival angles and want to plot that response
versus angle.

function plot_ULA_response

azangles = [-90:90];

elangles = zeros(size(azangles));

fc = 100e9;

c = physconst('LightSpeed');

N = size(azangles,2);

lambda = c/fc;

d = 0.4*lambda;

numelements = 11;

resp = zeros(1,N);

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[1,200]*1e9,...

 'BackBaffled',false);

sULA = phased.ULA('Element',sIso,...

 'NumElements',numelements,...

 'ElementSpacing',d,...

 'Taper',taylorwin(numelements).');

for n = 1:N

 x = get_ULA_response(sULA,fc,azangles(n),elangles(n));

 resp(n) = abs(x);

end

plot(azangles,20*log10(resp));

title('ULA Response');

xlabel('Angle (deg)');

ylabel('Response (db)');

grid;

end

function resp = get_ULA_response(sULA,fc,az,el)

persistent sAR;

c = physconst('LightSpeed');

if isempty(sAR)

 sAR = phased.ArrayResponse('SensorArray',sULA,...

 'PropagationSpeed',c,...

13 Code Generation

13-16

 'WeightsInputPort',false,...

 'EnablePolarization',false);

end

resp = step(sAR,fc,[az;el]);

end

To create the code, run codegento create the mex-file plot_ULA_response_mex, and
execute the mex-file at the command line:

codegen plot_ULA_response

plot_ULA_response_mex;

which yields the plot

 Generate MEX Function Containing Persistent System Objects

13-17

13 Code Generation

13-18

Functions and System Objects Supported for C/C++ Code
Generation

Name Remarks and Limitations

Antenna and Microphone Elements
aperture2gain Does not support variable-size inputs.
azel2phithetapat Does not support variable-size inputs.
azel2uvpat Does not support variable-size inputs.
circpol2pol Does not support variable-size inputs.
gain2aperture Does not support variable-size inputs.
phased.CosineAntennaElement • pattern, patternAzimuth,

patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CrossedDipoleAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CustomAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CustomMicrophoneElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.IsotropicAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

 Functions and System Objects Supported for C/C++ Code Generation

13-19

Name Remarks and Limitations

• See “System Objects in MATLAB Code
Generation”.

phased.OmnidirectionalMicrophoneElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ShortDipoleAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phitheta2azelpat Does not support variable-size inputs.
phitheta2uvpat Does not support variable-size inputs.
pol2circpol Does not support variable-size inputs.
polellip Does not support variable-size inputs.
polloss Does not support variable-size inputs.
polratio Does not support variable-size inputs.
polsignature • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

stokes • Does not support variable-size inputs.
• Supported only when output arguments are

specified.
uv2azelpat Does not support variable-size inputs.
uv2phithetapat Does not support variable-size inputs.
Array Geometries and Analysis
az2broadside Does not support variable-size inputs.
broadside2az Does not support variable-size inputs.
pilotcalib Does not support variable-size inputs.

13 Code Generation

13-20

Name Remarks and Limitations

phased.ArrayGain • Does not support arrays containing
polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement

antennas.
• See “System Objects in MATLAB Code

Generation”.
phased.ArrayResponse See “System Objects in MATLAB Code

Generation”.
phased.ConformalArray • pattern, patternAzimuth,

patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ElementDelay See “System Objects in MATLAB Code
Generation”.

phased.PartitionedArray • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ReplicatedSubarray • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.SteeringVector See “System Objects in MATLAB Code
Generation”.

phased.UCA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

 Functions and System Objects Supported for C/C++ Code Generation

13-21

Name Remarks and Limitations

phased.ULA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.URA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

Signal Radiation and Collection
phased.Collector See “System Objects in MATLAB Code

Generation”.
phased.Radiator See “System Objects in MATLAB Code

Generation”.
phased.WidebandCollector • Requires dynamic memory allocation. See

“Limitations for System Objects that Require
Dynamic Memory Allocation” on page 13-11.

• See “System Objects in MATLAB Code
Generation”.

phased.WidebandRadiator See “System Objects in MATLAB Code
Generation”.

sensorsig Does not support variable-size inputs.
Transmitters and Receivers
delayseq Does not support variable-size inputs.
noisepow Does not support variable-size inputs.
phased.ReceiverPreamp See “System Objects in MATLAB Code

Generation”.
phased.Transmitter See “System Objects in MATLAB Code

Generation”.
systemp Does not support variable-size inputs.
Waveform Design and Analysis

13 Code Generation

13-22

Name Remarks and Limitations

ambgfun Does not support variable-size inputs.
phased.FMCWWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

.
phased.LinearFMWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.MFSKWaveform • plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.PhaseCodedWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.RectangularWaveform • plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.SteppedFMWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

range2bw Does not support variable-size inputs.
range2time Does not support variable-size inputs.
time2range Does not support variable-size inputs.
unigrid Does not support variable-size inputs.
Beamforming
cbfweights Does not support variable-size inputs.
lcmvweights Does not support variable-size inputs.
mvdrweights Does not support variable-size inputs.

 Functions and System Objects Supported for C/C++ Code Generation

13-23

Name Remarks and Limitations

phased.FrostBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation” on page 13-11.

• See “System Objects in MATLAB Code
Generation”.

phased.LCMVBeamformer See “System Objects in MATLAB Code
Generation”.

phased.MVDRBeamformer See “System Objects in MATLAB Code
Generation”.

phased.PhaseShiftBeamformer See “System Objects in MATLAB Code
Generation”.

phased.SteeringVector See “System Objects in MATLAB Code
Generation”.

phased.SubbandMVDRBeamformer See “System Objects in MATLAB Code
Generation”.

phased.SubbandPhaseShiftBeamformer See “System Objects in MATLAB Code
Generation”.

phased.TimeDelayBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation” on page 13-11.

• See “System Objects in MATLAB Code
Generation”.

phased.TimeDelayLCMVBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation” on page 13-11.

• See “System Objects in MATLAB Code
Generation”.

sensorcov Does not support variable-size inputs.
steervec Does not support variable-size inputs.
Direction of Arrival (DOA) Estimation
aictest Does not support variable-size inputs.
espritdoa Does not support variable-size inputs.

13 Code Generation

13-24

Name Remarks and Limitations

gccphat Does not support variable-size inputs.
mdltest Does not support variable-size inputs.
phased.BeamscanEstimator See “System Objects in MATLAB Code

Generation”.
phased.BeamscanEstimator2D See “System Objects in MATLAB Code

Generation”.
phased.BeamspaceESPRITEstimator See “System Objects in MATLAB Code

Generation”.
phased.ESPRITEstimator See “System Objects in MATLAB Code

Generation”.
phased.GCCEstimator See “System Objects in MATLAB Code

Generation”.
phased.MVDREstimator See “System Objects in MATLAB Code

Generation”.
phased.MVDREstimator2D See “System Objects in MATLAB Code

Generation”.
phased.RootMUSICEstimator See “System Objects in MATLAB Code

Generation”.
phased.RootWSFEstimator See “System Objects in MATLAB Code

Generation”.
phased.SumDifferenceMonopulseTracker See “System Objects in MATLAB Code

Generation”.
phased.SumDifferenceMonopulseTracker2D See “System Objects in MATLAB Code

Generation”.
rootmusicdoa Does not support variable-size inputs.
spsmooth Does not support variable-size inputs.
Space-Time Adaptive Processing (STAP)
dopsteeringvec Does not support variable-size inputs.
phased.ADPCACanceller See “System Objects in MATLAB Code

Generation”.

 Functions and System Objects Supported for C/C++ Code Generation

13-25

Name Remarks and Limitations

phased.AngleDopplerResponse See “System Objects in MATLAB Code
Generation”.

phased.DPCACanceller See “System Objects in MATLAB Code
Generation”.

phased.STAPSMIBeamformer See “System Objects in MATLAB Code
Generation”.

val2ind Does not support variable-size inputs.
Targets, Interference, and Signal Propagation
billingsleyicm Does not support variable-size inputs.
depressionang Does not support variable-size inputs.
effearthradius Does not support variable-size inputs.
fspl Does not support variable-size inputs.
fogpl Does not support variable-size inputs.
gaspl Does not support variable-size inputs.
grazingang Does not support variable-size inputs.
horizonrange Does not support variable-size inputs.
phased.BackscatterRadarTarget See “System Objects in MATLAB Code

Generation”
phased.BarrageJammer See “System Objects in MATLAB Code

Generation”.
phased.ConstantGammaClutter See “System Objects in MATLAB Code

Generation”.
phased.FreeSpace • Requires dynamic memory allocation. See

“Limitations for System Objects that Require
Dynamic Memory Allocation” on page 13-11.

• See “System Objects in MATLAB Code
Generation”.

phased.LOSChannel See “System Objects in MATLAB Code
Generation”

phased.RadarTarget See “System Objects in MATLAB Code
Generation”.

13 Code Generation

13-26

Name Remarks and Limitations

phased.TwoRayChannel See “System Objects in MATLAB Code
Generation”.

phased.WidebandFreeSpace See “System Objects in MATLAB Code
Generation”.

phased.WidebandLOSChannel See “System Objects in MATLAB Code
Generation”

physconst Does not support variable-size inputs.
surfacegamma Does not support variable-size inputs.
surfclutterrcs Does not support variable-size inputs.
rainpl Does not support variable-size inputs.
Motion Modeling and Coordinate Systems
azel2phitheta Does not support variable-size inputs.
azel2uv Does not support variable-size inputs.
azelaxes Does not support variable-size inputs.
cart2sphvec Does not support variable-size inputs.
dop2speed Does not support variable-size inputs.
global2localcoord Does not support variable-size inputs.
local2globalcoord Does not support variable-size inputs.
phased.Platform See “System Objects in MATLAB Code

Generation”.
phitheta2azel Does not support variable-size inputs.
phitheta2uv Does not support variable-size inputs.
radialspeed Does not support variable-size inputs.
rangeangle Does not support variable-size inputs.
rotx Does not support variable-size inputs.
roty Does not support variable-size inputs
rotz Does not support variable-size inputs.
speed2dop Does not support variable-size inputs.
sph2cartvec Does not support variable-size inputs.

 Functions and System Objects Supported for C/C++ Code Generation

13-27

Name Remarks and Limitations

uv2azel Does not support variable-size inputs.

14

Define New System Objects

• “Define Basic System Objects” on page 14-3
• “Change Number of Step Inputs or Outputs” on page 14-6
• “Validate Property and Input Values” on page 14-10
• “Initialize Properties and Setup One-Time Calculations” on page 14-13
• “Set Property Values at Construction Time” on page 14-16
• “Reset Algorithm State” on page 14-18
• “Define Property Attributes” on page 14-20
• “Hide Inactive Properties” on page 14-24
• “Limit Property Values to Finite String Set” on page 14-26
• “Process Tuned Properties” on page 14-29
• “Release System Object Resources” on page 14-31
• “Define Composite System Objects” on page 14-33
• “Define Finite Source Objects” on page 14-36
• “Save System Object” on page 14-38
• “Load System Object” on page 14-42
• “Define System Object Information” on page 14-46
• “Add Data Types Tab to MATLAB System Block” on page 14-48
• “Add Button to MATLAB System Block” on page 14-50
• “Specify Locked Input Size” on page 14-53
• “Set Model Reference Discrete Sample Time Inheritance” on page 14-55
• “Methods Timing” on page 14-57
• “System Object Input Arguments and ~ in Code Examples” on page 14-60
• “What Are Mixin Classes?” on page 14-61
• “Best Practices for Defining System Objects” on page 14-62
• “Insert System Object Code Using MATLAB Editor” on page 14-65

14 Define New System Objects

14-2

• “Analyze System Object Code” on page 14-72
• “Define System Object for Use in Simulink” on page 14-75

 Define Basic System Objects

14-3

Define Basic System Objects

This example shows how to create a basic System object that increments a number
by one. The class definition file used in the example contains the minimum elements
required to define a System object.

Create System Object

You can create and edit a MAT-file or use the MATLAB Editor to create your System
object. This example describes how to use the New menu in the MATLAB Editor.

In MATLAB, on the Editor tab, select New > System Object > Basic. A simple System
object template opens.

Subclass your object from matlab.System. Replace Untitled with AddOne in the first
line of your file.

classdef AddOne < matlab.System

Save the file and name it AddOne.m.

Define Algorithm

The stepImpl method contains the algorithm to execute when you call the step method
on your object. Define this method so that it contains the actions you want the System
object to perform.

1 In the basic System object you created, inspect the stepImpl method template.

methods (Access = protected)

 function y = stepImpl(obj,u)

 % Implement algorithm. Calculate y as a function of input u and

 % discrete states.

 y = u;

 end

end

The stepImpl method access is always set to protected because it is an internal
method that users do not directly call or run.

All methods, except static methods, expect the System object handle as the first
input argument. The default value, inserted by MATLAB Editor, is obj. You can use
any name for your System object handle.

14 Define New System Objects

14-4

By default, the number of inputs and outputs are both 1. Inputs and outputs can
be added using Inputs/Outputs. If you use variable number of inputs or outputs,
insert the appropriate getNumInputsImpl or getNumOutputsImpl method.

Alternatively, if you create your System object by editing a MAT-file, you can add the
stepImpl method using Insert Method > Implement algorithm.

2 Change the computation in the y function to add 1 to the value of u.

methods (Access = protected)

 function y = stepImpl(~,u)

 y = u + 1;

 end

Note: Instead of passing in the object handle, you can use the tilde (~) to indicate
that the object handle is not used in the function. Using the tilde instead of an object
handle prevents warnings about unused variables.

3 Remove the additional, unused methods that are included by default in the basic
template. Alternatively, you can modify these methods to add more System object
actions and properties. You can also make no changes, and the System object still
operates as intended.

The class definition file now has all the code necessary for this System object.

classdef AddOne < matlab.System

% ADDONE Compute an output value one greater than the input value

 % All methods occur inside a methods declaration.

 % The stepImpl method has protected access

 methods (Access = protected)

 function y = stepImpl(~,u)

 y = u + 1;

 end

 end

end

See Also
matlab.System | getNumInputsImpl | getNumOutputsImpl | stepImpl

 Define Basic System Objects

14-5

Related Examples
• “Change Number of Step Inputs or Outputs” on page 14-6

More About
• “System Design and Simulation in MATLAB”

14 Define New System Objects

14-6

Change Number of Step Inputs or Outputs

This example shows how to specify two inputs and two outputs for the step method.

If you specify the inputs and outputs to the stepImpl method, you do not need to
specify the getNumInputsImpl and getNumOutputsImpl methods. If you have a
variable number of inputs or outputs (using varargin or varargout), include the
getNumInputsImpl or getNumOutputsImpl method, respectively, in your class
definition file.

Note: You should only use getNumInputsImpl or getNumOutputsImpl methods to
change the number of System object inputs or outputs. Do not use any other handle
objects within a System object to change the number of inputs or outputs.

You always set the getNumInputsImpl and getNumOutputsImpl methods access to
protected because they are internal methods that users do not directly call or run.

Update the Algorithm for Multiple Inputs and Outputs

Update the stepImpl method to specify two inputs and two outputs. You do not need to
implement associated getNumInputsImpl or getNumOutputsImpl methods.

methods (Access = protected)

 function [y1,y2] = stepImpl(~,x1,x2)

 y1 = x1 + 1

 y2 = x2 + 1;

 end

end

Update the Algorithm and Associated Methods

Update the stepImpl method to use varargin and varargout. In this case, you must
implement the associated getNumInputsImpl and getNumOutputsImpl methods to
specify two or three inputs and outputs.

methods (Access = protected)

 function varargout = stepImpl(obj,varargin)

 varargout{1} = varargin{1}+1;

 varargout{2} = varargin{2}+1;

 if (obj.numInputsOutputs == 3)

 varargout{3} = varargin{3}+1;

 Change Number of Step Inputs or Outputs

14-7

 end

 end

 function validatePropertiesImpl(obj)

 if ~((obj.numInputsOutputs == 2) ||...

 (obj.numInputsOutputs == 3))

 error('Only 2 or 3 input and outputs allowed.');

 end

 end

 function numIn = getNumInputsImpl(obj)

 numIn = 3;

 if (obj.numInputsOutputs == 2)

 numIn = 2;

 end

 end

 function numOut = getNumOutputsImpl(obj)

 numOut = 3;

 if (obj.numInputsOutputs == 2)

 numOut = 2;

 end

 end

end

Use this syntax to run the algorithm with two inputs and two outputs.

x1 = 3;

x2 = 7;

[y1,y2] = step(AddOne,x1,x2);

To change the number of inputs or outputs, you must release the object before rerunning
it.

release(AddOne)

x1 = 3;

x2 = 7;

x3 = 10

[y1,y2,y3] = step(AddOne,x1,x2,x3);

Complete Class Definition File with Multiple Inputs and Outputs

 classdef AddOne < matlab.System

% ADDONE Compute output values one greater than the input values

14 Define New System Objects

14-8

 % This property is nontunable and cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

 numInputsOutputs = 3; % Default value

 end

 % All methods occur inside a methods declaration.

 % The stepImpl method has protected access

 methods (Access = protected)

 function varargout = stepImpl(obj,varargin)

 if (obj.numInputsOutputs == 2)

 varargout{1} = varargin{1}+1;

 varargout{2} = varargin{2}+1;

 else

 varargout{1} = varargin{1}+1;

 varargout{2} = varargin{2}+1;

 varargout{3} = varargin{3}+1;

 end

 end

 function validatePropertiesImpl(obj)

 if ~((obj.numInputsOutputs == 2) ||...

 (obj.numInputsOutputs == 3))

 error('Only 2 or 3 input and outputs allowed.');

 end

 end

 function numIn = getNumInputsImpl(obj)

 numIn = 3;

 if (obj.numInputsOutputs == 2)

 numIn = 2;

 end

 end

 function numOut = getNumOutputsImpl(obj)

 numOut = 3;

 if (obj.numInputsOutputs == 2)

 numOut = 2;

 end

 end

 end

 Change Number of Step Inputs or Outputs

14-9

end

See Also
getNumInputsImpl | getNumOutputsImpl

Related Examples
• “Validate Property and Input Values” on page 14-10
• “Define Basic System Objects” on page 14-3

More About
• “System Object Input Arguments and ~ in Code Examples” on page 14-60

14 Define New System Objects

14-10

Validate Property and Input Values

This example shows how to verify that the user’s inputs and property values are valid.

Validate Properties

This example shows how to validate the value of a single property using
set.PropertyName syntax. In this case, the PropertyName is Increment.

 methods

 % Validate the properties of the object

 function set.Increment(obj,val)

 if val >= 10

 error('The increment value must be less than 10');

 end

 obj.Increment = val;

 end

 end

This example shows how to validate the value of two interdependent properties using the
validatePropertiesImpl method. In this case, the UseIncrement property value
must be true and the WrapValue property value must be less than the Increment
property value.

 methods (Access = protected)

 function validatePropertiesImpl(obj)

 if obj.UseIncrement && obj.WrapValue > obj.Increment

 error('Wrap value must be less than increment value');

 end

 end

 end

Validate Inputs

This example shows how to validate that the first input is a numeric value.

methods (Access = protected)

 function validateInputsImpl(~,x)

 if ~isnumeric(x)

 error('Input must be numeric');

 end

 end

 Validate Property and Input Values

14-11

end

Complete Class Definition File with Property and Input Validation

classdef AddOne < matlab.System

% ADDONE Compute an output value by incrementing the input value

 % All properties occur inside a properties declaration.

 % These properties have public access (the default)

 properties (Logical)

 UseIncrement = true

 end

 properties (PositiveInteger)

 Increment = 1

 WrapValue = 10

 end

 methods

 % Validate the properties of the object

 function set.Increment(obj,val)

 if val >= 10

 error('The increment value must be less than 10');

 end

 obj.Increment = val;

 end

 end

 methods (Access = protected)

 function validatePropertiesImpl(obj)

 if obj.UseIncrement && obj.WrapValue > obj.Increment

 error('Wrap value must be less than increment value');

 end

 end

 % Validate the inputs to the object

 function validateInputsImpl(~,x)

 if ~isnumeric(x)

 error('Input must be numeric');

 end

 end

 function out = stepImpl(obj,in)

 if obj.UseIncrement

 out = in + obj.Increment;

14 Define New System Objects

14-12

 else

 out = in + 1;

 end

 end

 end

end

Note: See “Change Input Complexity or Dimensions” for more information.

See Also
validateInputsImpl | validatePropertiesImpl

Related Examples
• “Define Basic System Objects” on page 14-3

More About
• “Methods Timing” on page 14-57
• “Property Set Methods”
• “System Object Input Arguments and ~ in Code Examples” on page 14-60

 Initialize Properties and Setup One-Time Calculations

14-13

Initialize Properties and Setup One-Time Calculations

This example shows how to write code to initialize and set up a System object.

In this example, you allocate file resources by opening the file so the System object can
write to that file. You do these initialization tasks one time during setup, rather than
every time you call the step method.

Define Public Properties to Initialize

In this example, you define the public Filename property and specify the value of that
property as the nontunable string, default.bin. Users cannot change nontunable
properties after the setup method has been called. Refer to the Methods Timing section
for more information.

properties (Nontunable)

 Filename = 'default.bin'

end

Define Private Properties to Initialize

Users cannot access private properties directly, but only through methods of the System
object. In this example, you define the pFileID property as a private property. You also
define this property as hidden to indicate it is an internal property that never displays to
the user.

properties (Hidden,Access = private)

 pFileID;

end

Define Setup

You use the setupImpl method to perform setup and initialization tasks. You should
include code in the setupImpl method that you want to execute one time only. The
setupImpl method is called once during the first call to the step method. In this
example, you allocate file resources by opening the file for writing binary data.

methods

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,'wb');

 if obj.pFileID < 0

 error('Opening the file failed');

14 Define New System Objects

14-14

 end

 end

end

Although not part of setup, you should close files when your code is done using them. You
use the releaseImpl method to release resources.

Complete Class Definition File with Initialization and Setup

classdef MyFile < matlab.System

% MyFile write numbers to a file

 % These properties are nontunable. They cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

 Filename = 'default.bin' % the name of the file to create

 end

 % These properties are private. Customers can only access

 % these properties through methods on this object

 properties (Hidden,Access = private)

 pFileID; % The identifier of the file to open

 end

 methods (Access = protected)

 % In setup allocate any resources, which in this case

 % means opening the file.

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,'wb');

 if obj.pFileID < 0

 error('Opening the file failed');

 end

 end

 % This System object™ writes the input to the file.

 function stepImpl(obj,data)

 fwrite(obj.pFileID,data);

 end

 % Use release to close the file to prevent the

 % file handle from being left open.

 function releaseImpl(obj)

 fclose(obj.pFileID);

 end

 end

 Initialize Properties and Setup One-Time Calculations

14-15

end

See Also
releaseImpl | setupImpl | stepImpl

Related Examples
• “Release System Object Resources” on page 14-31
• “Define Property Attributes” on page 14-20

More About
• “Methods Timing” on page 14-57

14 Define New System Objects

14-16

Set Property Values at Construction Time

This example shows how to define a System object constructor and allow it to accept
name-value property pairs as input.

Set Properties to Use Name-Value Pair Input

Define the System object constructor, which is a method that has the same name as
the class (MyFile in this example). Within that method, you use the setProperties
method to make all public properties available for input when the user constructs the
object. nargin is a MATLAB function that determines the number of input arguments.
varargin indicates all of the object’s public properties.

methods

 function obj = MyFile(varargin)

 setProperties(obj,nargin,varargin{:});

 end

end

Complete Class Definition File with Constructor Setup

classdef MyFile < matlab.System

% MyFile write numbers to a file

 % These properties are nontunable. They cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

 Filename ='default.bin' % the name of the file to create

 Access = 'wb' % The file access string (write, binary)

 end

 % These properties are private. Customers can only access

 % these properties through methods on this object

 properties (Hidden,Access = private)

 pFileID; % The identifier of the file to open

 end

 methods

 % You call setProperties in the constructor to let

 % a user specify public properties of object as

 % name-value pairs.

 function obj = MyFile(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 Set Property Values at Construction Time

14-17

 end

 methods (Access = protected)

 % In setup allocate any resources, which in this case is

 % opening the file.

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,obj.Access);

 if obj.pFileID < 0

 error('Opening the file failed');

 end

 end

 % This System object™ writes the input to the file.

 function stepImpl(obj,data)

 fwrite(obj.pFileID,data);

 end

 % Use release to close the file to prevent the

 % file handle from being left open.

 function releaseImpl(obj)

 fclose(obj.pFileID);

 end

 end

end

See Also
nargin | setProperties

Related Examples
• “Define Property Attributes” on page 14-20
• “Release System Object Resources” on page 14-31

14 Define New System Objects

14-18

Reset Algorithm State

This example shows how to reset an object state.

Reset Counter to Zero

pCount is an internal counter property of the System object obj. The user calls the
reset method on the locked object, which calls the resetImpl method. In this example ,
pCount resets to 0.

Note: When resetting an object’s state, make sure you reset the size, complexity, and
data type correctly.

methods (Access = protected)

 function resetImpl(obj)

 obj.pCount = 0;

 end

end

Complete Class Definition File with State Reset

classdef Counter < matlab.System

% Counter System object™ that increments a counter

 properties (Access = private)

 pCount

 end

 methods (Access = protected)

 % In step, increment the counter and return

 % its value as an output

 function c = stepImpl(obj)

 obj.pCount = obj.pCount + 1;

 c = obj.pCount;

 end

 % Reset the counter to zero.

 function resetImpl(obj)

 obj.pCount = 0;

 end

 end

 Reset Algorithm State

14-19

end

See “Methods Timing” on page 14-57 for more information.

See Also
resetImpl

More About
• “Methods Timing” on page 14-57

14 Define New System Objects

14-20

Define Property Attributes

This example shows how to specify property attributes.

Property attributes, which add details to a property, provide a layer of control to your
properties. In addition to the MATLAB property attributes, System objects can use these
three additional attributes—nontunable, logical, and positiveInteger. To specify
multiple attributes, separate them with commas.

Specify Property as Nontunable

Use the nontunable attribute for a property when the algorithm depends on the value
being constant once data processing starts. Defining a property as nontunable may
improve the efficiency of your algorithm by removing the need to check for or react to
values that change. For code generation, defining a property as nontunable allows the
memory associated with that property to be optimized. You should define all properties
that affect the number of input or output ports as nontunable.

System object users cannot change nontunable properties after the setup or step
method has been called. In this example, you define the InitialValue property, and set
its value to 0.

properties (Nontunable)

 InitialValue = 0;

end

Specify Property as Logical

Logical properties have the value, true or false. System object users can enter 1 or
0 or any value that can be converted to a logical. The value, however, displays as true
or false. You can use sparse logical values, but they must be scalar values. In this
example, the Increment property indicates whether to increase the counter. By default,
Increment is tunable property. The following restrictions apply to a property with the
Logical attribute,

• Cannot also be Dependent or PositiveInteger
• Default value must be true or false. You cannot use 1 or 0 as a default value.

properties (Logical)

 Increment = true

end

 Define Property Attributes

14-21

Specify Property as Positive Integer

In this example, the private property MaxValue is constrained to accept only real,
positive integers. You cannot use sparse values. The following restriction applies to a
property with the PositiveInteger attribute,

• Cannot also be Dependent or Logical

properties (PositiveInteger)

 MaxValue

end

Specify Property as DiscreteState

If your algorithm uses properties that hold state, you can assign those properties the
DiscreteState attribute . Properties with this attribute display their state values
when users call getDiscreteStateImpl via the getDiscreteState method. The
following restrictions apply to a property with the DiscreteState attribute,

• Numeric, logical, or fi value, but not a scaled double fi value
• Does not have any of these attributes: Nontunable, Dependent, Abstract,

Constant, or Transient.
• No default value
• Not publicly settable
• GetAccess = Public by default
• Value set only using the setupImpl method or when the System object is locked

during resetImpl or stepImpl

In this example, you define the Count property.

properties (DiscreteState)

 Count;

end

Complete Class Definition File with Property Attributes

classdef Counter < matlab.System

% Counter Increment a counter to a maximum value

 % These properties are nontunable. They cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

14 Define New System Objects

14-22

 % The inital value of the counter

 InitialValue = 0

 end

 properties (Nontunable, PositiveInteger)

 % The maximum value of the counter

 MaxValue = 3

 end

 properties (Logical)

 % Whether to increment the counter

 Increment = true

 end

 properties (DiscreteState)

 % Count state variable

 Count

 end

 methods (Access = protected)

 % In step, increment the counter and return its value

 % as an output

 function c = stepImpl(obj)

 if obj.Increment && (obj.Count < obj.MaxValue)

 obj.Count = obj.Count + 1;

 else

 disp(['Max count, ' num2str(obj.MaxValue) ',reached'])

 end

 c = obj.Count;

 end

 % Setup the Count state variable

 function setupImpl(obj)

 obj.Count = 0;

 end

 % Reset the counter to one.

 function resetImpl(obj)

 obj.Count = obj.InitialValue;

 end

 end

 Define Property Attributes

14-23

end

More About
• “Class Attributes”
• “Property Attributes”
• “What You Cannot Change While Your System Is Running”
• “Methods Timing” on page 14-57

14 Define New System Objects

14-24

Hide Inactive Properties

This example shows how to hide the display of a property that is not active for a
particular object configuration.

Hide an inactive property

You use the isInactivePropertyImpl method to hide a property from displaying. If
the isInactiveProperty method returns true to the property you pass in, then that
property does not display.

methods (Access = protected)

 function flag = isInactivePropertyImpl(obj,propertyName)

 if strcmp(propertyName,'InitialValue')

 flag = obj.UseRandomInitialValue;

 else

 flag = false;

 end

 end

end

Complete Class Definition File with Hidden Inactive Property

classdef Counter < matlab.System

 % Counter Increment a counter

 % These properties are nontunable. They cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

 % Allow the user to set the initial value

 UseRandomInitialValue = true

 InitialValue = 0

 end

 % The private count variable, which is tunable by default

 properties (Access = private)

 pCount

 end

 methods (Access = protected)

 % In step, increment the counter and return its value

 % as an output

 function c = stepImpl(obj)

 obj.pCount = obj.pCount + 1;

 Hide Inactive Properties

14-25

 c = obj.pCount;

 end

 % Reset the counter to either a random value or the initial

 % value.

 function resetImpl(obj)

 if obj.UseRandomInitialValue

 obj.pCount = rand();

 else

 obj.pCount = obj.InitialValue;

 end

 end

 % This method controls visibility of the object's properties

 function flag = isInactivePropertyImpl(obj,propertyName)

 if strcmp(propertyName,'InitialValue')

 flag = obj.UseRandomInitialValue;

 else

 flag = false;

 end

 end

 end

end

See Also
isInactivePropertyImpl

14 Define New System Objects

14-26

Limit Property Values to Finite String Set

This example shows how to limit a property to accept only a finite set of string values.

Specify a Set of Valid String Values

String sets use two related properties. You first specify the user-visible property name
and default string value. Then, you specify the associated hidden property by appending
“Set” to the property name. You must use a capital “S” in “Set.”

In the “Set” property, you specify the valid string values as a cell array of the
matlab.system.Stringset class. This example uses Color and ColorSet as the
associated properties.

properties

 Color = 'blue'

end

properties (Hidden,Transient)

 ColorSet = matlab.system.StringSet({'red','blue','green'});

end

Complete Class Definition File with String Set

classdef Whiteboard < matlab.System

% Whiteboard Draw lines on a figure window

%

% This System object™ illustrates the use of StringSets

 properties

 Color = 'blue'

 end

 properties (Hidden,Transient)

 % Let them choose a color

 ColorSet = matlab.system.StringSet({'red','blue','green'});

 end

 methods (Access = protected)

 function stepImpl(obj)

 h = Whiteboard.getWhiteboard();

 plot(h, ...

 randn([2,1]),randn([2,1]), ...

 'Color',obj.Color(1));

 Limit Property Values to Finite String Set

14-27

 end

 function releaseImpl(obj)

 cla(Whiteboard.getWhiteboard());

 hold on

 end

 end

 methods (Static)

 function a = getWhiteboard()

 h = findobj('tag','whiteboard');

 if isempty(h)

 h = figure('tag','whiteboard');

 hold on

 end

 a = gca;

 end

 end

end

String Set System Object Example

%%

% Each call to step draws lines on a whiteboard

%% Construct the System object

hGreenInk = Whiteboard;

hBlueInk = Whiteboard;

% Change the color

% Note: Press tab after typing the first single quote to

% display all enumerated values.

hGreenInk.Color = 'green';

hBlueInk.Color = 'blue';

% Take a few steps

for i=1:3

 hGreenInk.step();

 hBlueInk.step();

end

%% Clear the whiteboard

hBlueInk.release();

%% Display System object used in this example

14 Define New System Objects

14-28

type('Whiteboard.m');

See Also
matlab.system.StringSet

 Process Tuned Properties

14-29

Process Tuned Properties

This example shows how to specify the action to take when a tunable property value
changes during simulation.

The processTunedPropertiesImpl method is useful for managing actions to prevent
duplication. In many cases, changing one of multiple interdependent properties causes
an action. With the processTunedPropertiesImpl method, you can control when that
action is taken so it is not repeated unnecessarily.

Control When a Lookup Table Is Generated

This example of processTunedPropertiesImpl causes the pLookupTable to be
regenerated when either the NumNotes or MiddleC property changes.

methods (Access = protected)

 function processTunedPropertiesImpl(obj)

 propChange = isChangedProperty(obj,obj.NumNotes)||...

 isChangedProperty(obj,obj.MiddleC)

 if propChange

 obj.pLookupTable = obj.MiddleC *...

 (1+log(1:obj.NumNotes)/log(12));

 end

 endend

Complete Class Definition File with Tuned Property Processing

classdef TuningFork < matlab.System

 % TuningFork Illustrate the processing of tuned parameters

 %

 properties

 MiddleC = 440

 NumNotes = 12

 end

 properties (Access = private)

 pLookupTable

 end

 methods (Access = protected)

 function resetImpl(obj)

 obj.MiddleC = 440;

 obj.pLookupTable = obj.MiddleC * ...

14 Define New System Objects

14-30

 (1+log(1:obj.NumNotes)/log(12));

 end

 function hz = stepImpl(obj,noteShift)

 % A noteShift value of 1 corresponds to obj.MiddleC

 hz = obj.pLookupTable(noteShift);

 end

 function processTunedPropertiesImpl(obj)

 propChange = isChangedProperty(obj,obj.NumNotes)||...

 isChangedProperty(obj,obj.MiddleC)

 if propChange

 obj.pLookupTable = obj.MiddleC *...

 (1+log(1:obj.NumNotes)/log(12));

 end

 end

end

See Also
processTunedPropertiesImpl

 Release System Object Resources

14-31

Release System Object Resources

This example shows how to release resources allocated and used by the System object.
These resources include allocated memory, files used for reading or writing, etc.

Release Memory by Clearing the Object

This method allows you to clear the axes on the Whiteboard figure window while keeping
the figure open.

methods

 function releaseImpl(obj)

 cla(Whiteboard.getWhiteboard());

 hold on

 end

end

Complete Class Definition File with Released Resources

classdef Whiteboard < matlab.System

% Whiteboard Draw lines on a figure window

%

% This System object™ shows the use of StringSets

%

 properties

 Color = 'blue'

 end

 properties (Hidden)

 % Let user choose a color

 ColorSet = matlab.system.StringSet({'red','blue','green'});

 end

 methods (Access = protected)

 function stepImpl(obj)

 h = Whiteboard.getWhiteboard();

 plot(h, ...

 randn([2,1]), randn([2,1]), ...

 'Color',obj.Color(1));

 end

 function releaseImpl(obj)

 cla(Whiteboard.getWhiteboard());

 hold on

14 Define New System Objects

14-32

 end

 end

 methods (Static)

 function a = getWhiteboard()

 h = findobj('tag','whiteboard');

 if isempty(h)

 h = figure('tag','whiteboard');

 hold on

 end

 a = gca;

 end

 end

end

See Also
releaseImpl

Related Examples
• “Initialize Properties and Setup One-Time Calculations” on page 14-13

 Define Composite System Objects

14-33

Define Composite System Objects

This example shows how to define System objects that include other System objects.

This example defines a bandpass filter System object from separate highpass and
lowpass filter System objects.

Store System Objects in Properties

To define a System object from other System objects, store those other objects in your
class definition file as properties. In this example, the highpass and lowpass filters are
the separate System objects defined in their own class-definition files.

properties (Access = private)

 % Properties that hold filter System objects

 pLowpass

 pHighpass

end

Complete Class Definition File of Bandpass Filter Composite System Object

classdef BandpassFIRFilter < matlab.System

% Implements a bandpass filter using a cascade of eighth-order lowpass

% and eighth-order highpass FIR filters.

 properties (Access = private)

 % Properties that hold filter System objects

 pLowpass

 pHighpass

 end

 methods (Access = protected)

 function setupImpl(obj)

 % Setup composite object from constituent objects

 obj.pLowpass = LowpassFIRFilter;

 obj.pHighpass = HighpassFIRFilter;

 end

 function yHigh = stepImpl(obj,u)

 yLow = step(obj.pLowpass,u);

 yHigh = step(obj.pHighpass,yLow);

 end

 function resetImpl(obj)

14 Define New System Objects

14-34

 reset(obj.pLowpass);

 reset(obj.pHighpass);

 end

 end

end

Class Definition File for Lowpass FIR Component of Bandpass Filter

classdef LowpassFIRFilter < matlab.System

% Implements eighth-order lowpass FIR filter with 0.6pi cutoff

 properties (Nontunable)

 % Filter coefficients

 Numerator = [0.006,-0.0133,-0.05,0.26,0.6,0.26,-0.05,-0.0133,0.006];

 end

 properties (DiscreteState)

 State

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 function y = stepImpl(obj,u)

 [y,obj.State] = filter(obj.Numerator,1,u,obj.State);

 end

 function resetImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 end

end

Class Definition File for Highpass FIR Component of Bandpass Filter

classdef HighpassFIRFilter < matlab.System

% Implements eighth-order highpass FIR filter with 0.4pi cutoff

 properties (Nontunable)

 % Filter coefficients

 Numerator = [0.006,0.0133,-0.05,-0.26,0.6,-0.26,-0.05,0.0133,0.006];

 end

 properties (DiscreteState)

 State

 Define Composite System Objects

14-35

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 function y = stepImpl(obj,u)

 [y,obj.State] = filter(obj.Numerator,1,u,obj.State);

 end

 function resetImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 end

end

See Also
nargin

14 Define New System Objects

14-36

Define Finite Source Objects

This example shows how to define a System object that performs a specific number of
steps or specific number of reads from a file.

Use the FiniteSource Class and Specify End of the Source

1 Subclass from finite source class.

 classdef RunTwice < matlab.System & ...

 matlab.system.mixin.FiniteSource

2 Specify the end of the source with the isDoneImpl method. In this example, the
source has two iterations.

 methods (Access = protected)

 function bDone = isDoneImpl(obj)

 bDone = obj.NumSteps==2

 end

Complete Class Definition File with Finite Source

classdef RunTwice < matlab.System & ...

 matlab.system.mixin.FiniteSource

 % RunTwice System object that runs exactly two times

 %

 properties (Access = private)

 NumSteps

 end

 methods (Access = protected)

 function resetImpl(obj)

 obj.NumSteps = 0;

 end

 function y = stepImpl(obj)

 if ~obj.isDone()

 obj.NumSteps = obj.NumSteps + 1;

 y = obj.NumSteps;

 else

 y = 0;

 end

 end

 function bDone = isDoneImpl(obj)

 Define Finite Source Objects

14-37

 bDone = obj.NumSteps==2;

 end

 end

end

See Also
matlab.system.mixin.FiniteSource

More About
• “What Are Mixin Classes?” on page 14-61
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 14-60

14 Define New System Objects

14-38

Save System Object

This example shows how to save a System object.

Save System Object and Child Object

Define a saveObjectImpl method to specify that more than just public properties
should be saved when the user saves a System object. Within this method, use the
default saveObjectImpl@matlab.System to save public properties to the struct,
s. Use the saveObject method to save child objects. Save protected and dependent
properties, and finally, if the object is locked, save the object’s state.

methods (Access = protected)

 function s = saveObjectImpl(obj)

 s = saveObjectImpl@matlab.System(obj);

 s.child = matlab.System.saveObject(obj.child);

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 if isLocked(obj)

 s.state = obj.state;

 end

 end

end

Complete Class Definition Files with Save and Load

The Counter class definition file sets up an object with a count property. This counter is
used in the MySaveLoader class definition file to count the number of child objects.

classdef Counter < matlab.System

 properties(DiscreteState)

 Count

 end

 methods (Access=protected)

 function setupImpl(obj, ~)

 obj.Count = 0;

 end

 function y = stepImpl(obj, u)

 if u > 0

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 Save System Object

14-39

 end

end

classdef MySaveLoader < matlab.System

 properties (Access = private)

 child

 pdependentprop = 1

 end

 properties (Access = protected)

 protectedprop = rand;

 end

 properties (DiscreteState = true)

 state

 end

 properties (Dependent)

 dependentprop

 end

 methods

 function obj = MySaveLoader(varargin)

 obj@matlab.System();

 setProperties(obj,nargin,varargin{:});

 end

 function set.dependentprop(obj, value)

 obj.pdependentprop = min(value, 5);

 end

 function value = get.dependentprop(obj)

 value = obj.pdependentprop;

 end

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.state = 42;

 obj.child = Counter;

 end

 function out = stepImpl(obj,in)

 obj.state = in + obj.state + obj.protectedprop + obj.pdependentprop;

 out = step(obj.child, obj.state);

14 Define New System Objects

14-40

 end

 end

 % Serialization

 methods (Access = protected)

 function s = saveObjectImpl(obj)

 % Call the base class method

 s = saveObjectImpl@matlab.System(obj);

 % Save the child System objects

 s.child = matlab.System.saveObject(obj.child);

 % Save the protected & private properties

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 % Save the state only if object locked

 if isLocked(obj)

 s.state = obj.state;

 end

 end

 function loadObjectImpl(obj,s,wasLocked)

 % Load child System objects

 obj.child = matlab.System.loadObject(s.child);

 % Load protected and private properties

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 % Load the state only if object locked

 if wasLocked

 obj.state = s.state;

 end

 % Call base class method to load public properties

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

 end

end

See Also
loadObjectImpl | saveObjectImpl

 Save System Object

14-41

Related Examples
• “Load System Object” on page 14-42

14 Define New System Objects

14-42

Load System Object

This example shows how to load and save a System object.

Load System Object and Child Object

Define a loadObjectImpl method to load a previously saved System object. Within
this method, use the matlab.System.loadObject to load the child System object,
load protected and private properties, load the state if the object is locked, and use
loadObjectImpl from the base class to load public properties.

methods (Access = protected)

 function loadObjectImpl(obj,s,wasLocked)

 obj.child = matlab.System.loadObject(s.child);

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 if wasLocked

 obj.state = s.state;

 end

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

end

Complete Class Definition Files with Save and Load

The Counter class definition file sets up an object with a count property. This counter is
used in the MySaveLoader class definition file to count the number of child objects.

classdef Counter < matlab.System

 properties(DiscreteState)

 Count

 end

 methods (Access=protected)

 function setupImpl(obj, ~)

 obj.Count = 0;

 end

 function y = stepImpl(obj, u)

 if u > 0

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 Load System Object

14-43

 end

 end

end

classdef MySaveLoader < matlab.System

 properties (Access = private)

 child

 pdependentprop = 1

 end

 properties (Access = protected)

 protectedprop = rand;

 end

 properties (DiscreteState = true)

 state

 end

 properties (Dependent)

 dependentprop

 end

 methods

 function obj = MySaveLoader(varargin)

 obj@matlab.System();

 setProperties(obj,nargin,varargin{:});

 end

 function set.dependentprop(obj, value)

 obj.pdependentprop = min(value, 5);

 end

 function value = get.dependentprop(obj)

 value = obj.pdependentprop;

 end

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.state = 42;

 obj.child = Counter;

 end

 function out = stepImpl(obj,in)

 obj.state = in + obj.state + obj.protectedprop + obj.pdependentprop;

14 Define New System Objects

14-44

 out = step(obj.child, obj.state);

 end

 end

 % Serialization

 methods (Access = protected)

 function s = saveObjectImpl(obj)

 % Call the base class method

 s = saveObjectImpl@matlab.System(obj);

 % Save the child System objects

 s.child = matlab.System.saveObject(obj.child);

 % Save the protected & private properties

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 % Save the state only if object locked

 if isLocked(obj)

 s.state = obj.state;

 end

 end

 function loadObjectImpl(obj,s,wasLocked)

 % Load child System objects

 obj.child = matlab.System.loadObject(s.child);

 % Load protected and private properties

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 % Load the state only if object locked

 if wasLocked

 obj.state = s.state;

 end

 % Call base class method to load public properties

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

 end

 Load System Object

14-45

end

See Also
loadObjectImpl | saveObjectImpl

Related Examples
• “Save System Object” on page 14-38

14 Define New System Objects

14-46

Define System Object Information

This example shows how to define information to display for a System object.

Define System Object Info

You can define your own info method to display specific information for your
System object. The default infoImpl method returns an empty struct. This
infoImpl method returns detailed information when the info method is called using
info(x,'details') or only count information if it is called using info(x).

methods (Access = protected)

 function s = infoImpl(obj,varargin)

 if nargin>1 && strcmp('details',varargin(1))

 s = struct('Name','Counter',...

 'Properties', struct('CurrentCount', ...

 obj.pCount,'Threshold',obj.Threshold));

 else

 s = struct('Count',obj.pCount);

 end

 end

end

Complete Class Definition File with InfoImpl

classdef Counter < matlab.System

 % Counter Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = 0;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

 Define System Object Information

14-47

 function y = stepImpl(obj,u)

 if (u > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function s = infoImpl(obj,varargin)

 if nargin>1 && strcmp('details',varargin(1))

 s = struct('Name','Counter',...

 'Properties', struct('CurrentCount', ...

 obj.pCount,'Threshold',obj.Threshold));

 else

 s = struct('Count',obj.pCount);

 end

 end

end

See Also
infoImpl

14 Define New System Objects

14-48

Add Data Types Tab to MATLAB System Block

This example shows how to add a Data Types tab to the MATLAB System block dialog
box. This tab includes fixed-point data type settings.

Display Data Types Tab

This example shows how to use matlab.system.showFiSettingsImpl to display the
Data Types tab in the MATLAB System block dialog.

methods (Static, Access = protected)

 function showTab = showFiSettingsImpl

 showTab = true;

 end

end

Complete Class Definition File with Data Types Tab

Use showFiSettingsImpl to display the Data Types tab for a System object that adds
an offset to a fixed-point input.

classdef FiTabAddOffset < matlab.System

% FiTabAddOffset Add an offset to input

 properties

 Offset = 1;

 end

 methods

 function obj = FiTabAddOffset(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 end

 methods (Access = protected)

 function y = stepImpl(~,u)

 y = u + obj.Offset;

 end

 end

 methods(Static, Access=protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header('Title',...

 'Add Offset','Text','Add an offset to the input');

 Add Data Types Tab to MATLAB System Block

14-49

 end

 function isVisible = showFiSettingsImpl

 isVisible = true;

 end

 end

end

14 Define New System Objects

14-50

Add Button to MATLAB System Block

This example shows how to add a button to the MATLAB System block dialog box. This
button launches a figure that plots a ramp function.

Define Action for Dialog Button

This example shows how to use matlab.system.display.Action to define the
MATLAB function or code associated with a button in the MATLAB System block dialog.
The example also shows how to set button options and use an actionData object input
to store a figure handle. This part of the code example uses the same figure when the
button is clicked multiple times, rather than opening a new figure for each button click.

methods(Static,Access = protected)

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(actionData,obj)...

 visualize(obj,actionData),'Label','Visualize');

 end

end

methods

 function obj = ActionDemo(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 function visualize(obj,actionData)

 f = actionData.UserData;

 if isempty(f) || ~ishandle(f)

 f = figure;

 actionData.UserData = f;

 else

 figure(f); % Make figure current

 end

 d = 1:obj.RampLimit;

 plot(d);

 end

end

Complete Class Definition File for Dialog Button

Define a property group and a second tab in the class definition file.

 Add Button to MATLAB System Block

14-51

classdef PlotRamp < matlab.System

 % Display a button to launch a plot figure.

 properties (Nontunable)

 RampLimit = 10;

 end

 methods(Static,Access = protected)

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(actionData,obj)...

 visualize(obj,actionData),'Label','Visualize');

 end

 end

 methods

 function obj = ActionDemo(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 function visualize(obj,actionData)

 f = actionData.UserData;

 if isempty(f) || ~ishandle(f)

 f = figure;

 actionData.UserData = f;

 else

 figure(f); % Make figure current

 end

 d = 1:obj.RampLimit;

 plot(d);

 end

 end

14 Define New System Objects

14-52

end

More About
• “System Object Input Arguments and ~ in Code Examples” on page 14-60

 Specify Locked Input Size

14-53

Specify Locked Input Size

This example shows how to specify whether the size of a System object input is locked.
The size of a locked input cannot change until the System object is unlocked. Use the
step method and run the object to lock it. Use release to unlock the object.

Use the isInputSizeLockedImpl method to specify that the input size is locked.

methods (Access = protected)

 function flag = isInputSizeLockedImpl(~,~)

 flag = true;

 end

end

View the method in the complete class definition file.

classdef Counter < matlab.System

 %Counter Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods

 function obj = Counter(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 end

 methods (Access=protected)

 function resetImpl(obj)

 obj.Count = 0;

 end

 function y = stepImpl(obj, u1)

 if (any(u1 >= obj.Threshold))

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

14 Define New System Objects

14-54

 function flag = isInputSizeLockedImpl(~,~)

 flag = true;

 end

 end

end

See Also
isInputSizeLockedImpl

 Set Model Reference Discrete Sample Time Inheritance

14-55

Set Model Reference Discrete Sample Time Inheritance
This example shows how to disallow model reference discrete sample time
inheritance for a System object. The System object defined in this example has
one input, so by default, it allows sample time inheritance. To override the default
and disallow inheritance, the class definition file for this example includes the
allowModelReferenceDiscreteSampleTimeInheritanceImpl method, with its
output set to false.

methods (Access = protected)

 function flag = ...

 allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj)

 flag = false;

 end

end

View the method in the complete class definition file.

classdef MyCounter < matlab.System

 % MyCounter Count values

 properties

 Threshold = 1;

 end

 properties (DiscreteState)

 Count

 end

 methods (Static, Access = protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header('MyCounter',...

 'Title','My Enhanced Counter',...

 'Text', 'This counter is an enhanced version.');

 end

 end

 methods (Access = protected)

 function flag = ...

 allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj)

 flag = false

 end

 function setupImpl(obj,u)

14 Define New System Objects

14-56

 obj.Count = 0;

 end

 function y = stepImpl(obj,u)

 if (u > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

 end

end

 Methods Timing

14-57

Methods Timing

In this section...

“Setup Method Call Sequence” on page 14-57
“Step Method Call Sequence” on page 14-58
“Reset Method Call Sequence” on page 14-58
“Release Method Call Sequence” on page 14-59

The call sequence diagrams show the order in which actions are performed when you run
the specified method. The background color or each action indicates the method type.

• White background — Sealed method
• Green background — User-implemented method
• White and green background — Sealed method that calls a user-implemented method

Setup Method Call Sequence

This hierarchy shows the actions performed when you call the setup method.

14 Define New System Objects

14-58

Step Method Call Sequence

This hierarchy shows the actions performed when you call the step method.

Reset Method Call Sequence

This hierarchy shows the actions performed when you call the reset method.

 Methods Timing

14-59

Release Method Call Sequence

This hierarchy shows the actions performed when you call the release method.

See Also
releaseImpl | resetImpl | setupImpl | stepImpl

Related Examples
• “Release System Object Resources” on page 14-31
• “Reset Algorithm State” on page 14-18
• “Set Property Values at Construction Time” on page 14-16
• “Define Basic System Objects” on page 14-3

More About
• “What Are System Object Methods?”
• “The Step Method”
• “Common Methods”

14 Define New System Objects

14-60

System Object Input Arguments and ~ in Code Examples

All methods, except static methods, expect the System object handle as the first input
argument. You can use any name for your System object handle. In many examples,
instead of passing in the object handle, ~ is used to indicate that the object handle is
not used in the function. Using ~ instead of an object handle prevents warnings about
unused variables.

 What Are Mixin Classes?

14-61

What Are Mixin Classes?

Mixin classes are partial classes that you can combine in various combinations to form
desired behaviors using multiple inheritance. System objects are composed of a base
class, matlab.System and may include one or more mixin classes. You specify the base
class and mixin classes on the first line of your class definition file.

The following mixin classes are available for use with System objects.

• matlab.system.mixin.CustomIcon — Defines a block icon for System objects in
the MATLAB System block

• matlab.system.mixin.FiniteSource — Adds the isDone method to System
objects that are sources

• matlab.system.mixin.Nondirect — Allows the System object, when used in the
MATLAB System block, to support nondirect feedthrough by making the runtime
callback functions, output and update available

• matlab.system.mixin.Propagates — Enables System objects to operate in the
MATLAB System block using the interpreted execution

14 Define New System Objects

14-62

Best Practices for Defining System Objects

A System object is a specialized kind of MATLAB object that is optimized for iterative
processing. Use System objects when you need to call the step method multiple times
or process data in a loop. When defining your own System object, use the following
suggestions to help your code run efficiently.

• Define all one-time calculations in the setupImpl method and cache the results in a
private property. Use the stepImpl method for repeated calculations.

• If properties are accessed more than once in the stepImpl method, cache those
properties as local variables inside the method. A typical example of multiple property
access is a loop. Iterative calculations using cached local variables run faster than
calculations that must access the properties of an object. When the calculations for
the method complete, you can save the local cached results back to the properties of
that System object. Copy frequently used tunable properties into private properties.
This best practice also applies to the updateImpl and outputImpl methods.

In this example, k is accessed multiple times in each loop iteration, but is saved to the
object property only once.

function y = stepImpl(obj,x)

 k = obj.MyProp;

 for p=1:100

 y = k * x;

 k = k + 0.1;

 end

 obj.MyProp = k;

end

• Property default values are shared across all instances of an object. Two instances of
a class can access the same default value if that property has not been overwritten by
either instance.

• Do not use string comparisons or string-based switch statements in the stepImpl
method. Instead, create a method handle in setupImpl. This handle points to a
method in the same class definition file. Use that handle in a loop in stepImpl.

This example shows how to use method handles and cached local variables in a loop
to implement an efficient object. In setupImpl, choose myMethod1 or myMethod2
based on a string comparison and assign the method handle to the pMethodHandle
property. Because there is a loop in stepImpl, assign the pMethodHandle property
to a local method handle, myFun, and then use myFun inside the loop.

 Best Practices for Defining System Objects

14-63

classdef MyClass < matlab.System

 function setupImpl(obj)

 if strcmp(obj.Method, 'Method1')

 obj.pMethodHandle = @myMethod1;

 else

 obj.pMethodHandle = @myMethod2;

 end

 end

 function y = stepImpl(obj,x)

 myFun = obj.pMethodHandle;

 for p=1:1000

 y = myFun(obj,x)

 end

 end

 end

 function y = myMethod1(x)

 y = x+1;

 end

 function y = myMethod2(x)

 y = x-1;

 end

end

• If the number of System object inputs does not change, do not implement the
getNumInputsImpl method. Also do not implement the getNumInputsImpl
method when you explicitly list the inputs in the stepImpl method instead of using
varargin. The same caveats apply to the getNumOutputsImpl and varargout
outputs.

• For the getNumInputsImpl and getNumOutputsImpl methods, if you set the return
argument from an object property, that object property must have the Nontunable
attribute.

• If the variables in a method do not need to retain their values between calls use local
scope for those variables in that method.

• For properties that do not change, define them in as Nontunable properties.
Tunable properties have slower access times than Nontunable properties

• Use the protected or private attribute instead of the public attribute for a
property, whenever possible. Some public properties have slower access times than
protected and private properties.

• Avoid using customized step, get, or set methods, whenever possible.

14 Define New System Objects

14-64

• Avoid using string comparisons within customized step, get, or set methods,
whenever possible. Use setupImpl for string comparisons instead.

• Specify Boolean values using true or false instead of 1 or 0, respectively.

 Insert System Object Code Using MATLAB Editor

14-65

Insert System Object Code Using MATLAB Editor

In this section...

“Define System Objects with Code Insertion” on page 14-65
“Create Fahrenheit Temperature String Set” on page 14-68
“Create Custom Property for Freezing Point” on page 14-69
“Define Input Size As Locked” on page 14-70

Define System Objects with Code Insertion

You can define System objects from the MATLAB Editor using code insertion options.
When you select these options, the MATLAB Editor adds predefined properties, methods,
states, inputs, or outputs to your System object. Use these tools to create and modify
System objects faster, and to increase accuracy by reducing typing errors.

To access the System object editing options, create a new System object, or open an
existing one.

To add predefined code to your System object, select the code from the appropriate menu.
For example, when you click Insert Property > Numeric, the MATLAB Editor adds the
following code:

 properties(Nontunable)

 Property

 end

The MATLAB Editor inserts the new property with the default name Property,
which you can rename. If you have an existing properties group with the Nontunable

14 Define New System Objects

14-66

attribute, the MATLAB Editor inserts the new property into that group. If you do not
have a property group, the MATLAB Editor creates one with the correct attribute.

Insert Options

PropertiesProperties of the System object: Numeric, Logical, String Set, Positive
Integer, Tunable Numeric, Private, Protected, and Custom. When you select
String Set or Custom Properties, a separate dialog box opens to guide you in
creating these properties.

Methods Methods commonly used in System object definitions. The MATLAB Editor
creates only the method structure. You specify the actions of that method.

The Insert Method menu organizes methods by categories, such as
Algorithm, Inputs and Outputs, and Properties and States. When you
select a method from the menu, the MATLAB Editor inserts the method
template in your System object code. In this example, selecting Insert
Method > Release resources inserts the following code:

 function releaseImpl(obj)

 % Release resources, such as file handles

 end

If an method from the Insert Method menu is present in the System object
code, that method is shown shaded on the Insert Method menu:

 Insert System Object Code Using MATLAB Editor

14-67

States Properties containing the DiscreteState attribute.
Inputs /
Outputs

Inputs, outputs, and related methods, such as Validate inputs and Lock
input size.

When you select an input or output, the MATLAB Editor inserts the
specified code in the stepImpl method. In this example, selecting Insert >
Input causes the MATLAB Editor to insert the required input variable u2.
The MATLAB Editor determines the variable name, but you can change it
after it is inserted.

 function y = stepImpl(obj,u,u2)

 % Implement algorithm. Calculate y as a function of input u and

 % discrete states.

 y = u;

 end

14 Define New System Objects

14-68

Create Fahrenheit Temperature String Set

1 Open a new or existing System object.
2 In the MATLAB Editor, select Insert Property > String Set.
3 In the String Set dialog box, under Name, replace Color with TemperatureUnit.
4 Remove the existing Color property values with the - (minus) button.
5 Add a property value with the + (plus) button. Enter Fahrenheit.
6 Add another property value with +. Enter Celsius.
7 Add another property value with +. Enter Kelvin.
8 Select Fahrenheit as the default value by clicking Default.

The dialog box now looks as shown:

9 To create this string set and associated properties, with the default value selected,
click Insert.

Examine the System object definition. The MATLAB Editor has added the following code:

 properties (Nontunable)

 Insert System Object Code Using MATLAB Editor

14-69

 TemperatureUnit = 'Fahrenheit';

 end

 properties(Constant, Hidden)

 TemperatureUnitSet = matlab.system.StringSet({'Fahrenheit','Celsius','Kelvin'});

 end

For more information on the StringSet class, see matlab.System.StringSet.

Create Custom Property for Freezing Point

1 Open a new or existing System object.
2 In the MATLAB Editor, select Insert Property > Custom Property.
3 In the Custom Property dialog box, under System Object Attributes, select

Nontunable. Under MATLAB Property Attributes, select Constant. Leave
GetAccess as public. SetAccess is grayed out because properties of type constant
can not be set using System object methods.

The dialog box now looks as shown:

14 Define New System Objects

14-70

4 To insert the property into the System object code, click Insert.

 properties(Nontunable, Constant)

 Property

 end

5 Replace Property with your property.

 properties(Nontunable, Constant)

 FreezingPointFahrenheit = 32;

 end

Define Input Size As Locked

1 Open a new or existing System object.

 Insert System Object Code Using MATLAB Editor

14-71

2 In the MATLAB Editor, select Insert Method > Lock input size.

The MATLAB Editor inserts this code into the System object:

 function flag = isInputSizeLockedImpl(obj,index)

 % Return true if input size is not allowed to change while

 % system is running

 flag = true;

 end

Related Examples
• “Analyze System Object Code” on page 14-72

14 Define New System Objects

14-72

Analyze System Object Code

In this section...

“View and Navigate System object Code” on page 14-72
“Example: Go to StepImpl Method Using Analyzer” on page 14-72

View and Navigate System object Code

View and navigate System object code using the Analyzer.

The Analyzer displays all elements in your System object code.

• Navigate to a specific input, output, property, state, or method by clicking the name of
that element.

• Expand or collapse element sections with the arrow buttons.
• Identify access levels for properties and custom methods with the + (public), #

(protected), and – (private) symbols.

Example: Go to StepImpl Method Using Analyzer

1 Open an existing System object.
2 Select Analyze.
3 Click stepImpl.

 Analyze System Object Code

14-73

The cursor in the MATLAB Editor window jumps to the stepImpl method.

14 Define New System Objects

14-74

Related Examples
• “Insert System Object Code Using MATLAB Editor” on page 14-65

 Define System Object for Use in Simulink

14-75

Define System Object for Use in Simulink

In this section...

“Develop System Object for Use in System Block” on page 14-75
“Define Block Dialog Box for Plot Ramp” on page 14-76

Develop System Object for Use in System Block

You can develop a System object for use in a System block and interactively preview the
block dialog box. This feature requires Simulink.

With the System Block editing options, the MATLAB Editor inserts predefined code
into the System object. This coding technique helps you create and modify your System
object faster and increases accuracy by reducing typing errors.

Using these options, you can also:

• View and interact with the block dialog design as you define the System object.
• Add dialog customization methods. If the block dialog box is open when you make

changes, the block dialog design preview updates the display on saving the file.
• Add icon methods. However, these elements display only on the MATLAB System

Block in Simulink, not in the Preview Dialog Box.

14 Define New System Objects

14-76

Define Block Dialog Box for Plot Ramp

1 Create a System object and name it PlotRamp. This name becomes the block dialog
box title. Save the System object.

2 Add a comment that contains the block description.

% Display a button to launch a plot figure.

This comment becomes the block parameters dialog box description, under the block
title.

3 Select System Block > Preview Block Dialog. The block dialog box displays as
you develop the System object.

 Define System Object for Use in Simulink

14-77

4 Add a ramp limit by selecting Insert Property > Numeric. Then change the
property name and set the value to 10.

 properties (Nontunable)

 RampLimit = 10;

 end

5 Using the System Block menu, insert the getPropertyGrouplsImpl method.

 methods(Access = protected, Static)

 function group = getPropertyGroupsImpl

 % Define property section(s) for System block dialog

 group = matlab.system.display.Section(mfilename('class'));

 end

 end

6 Add code to create the group for the visualize action..

 methods(Access = protected, Static)

 function group = getPropertyGroupsImpl

 % Define property section(s) for System block dialog

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(~,obj)...

 visualize(obj),'Label','Visualize');

 end

 end

7 Add a function that adds code to display the Visualize button on the dialog box.

 methods

 function visualize(obj)

 figure;

14 Define New System Objects

14-78

 d = 1:obj.RampLimit;

 plot(d);

 end

 end

8 As you add elements to the System block definition, save your file. Observe the
effects of your code additions to the System block definition.

The System Block menu also displays checks next to the methods you have
implemented, which can help you track your development.

 Define System Object for Use in Simulink

14-79

The class definition file now has all the code necessary for the PlotRamp System object.

classdef PlotRamp < matlab.System

 % Display a button to launch a plot figure.

 properties (Nontunable)

 RampLimit = 10;

 end

 methods(Static, Access=protected)

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(~,obj)...

 visualize(obj),'Label','Visualize');

 end

 end

 methods

 function visualize(obj)

 figure;

 d = 1:obj.RampLimit;

 plot(d);

 end

 end

end

14 Define New System Objects

14-80

After you complete your System block definition, save it, and then load it into a MATLAB
System block in Simulink.

Related Examples
• “Insert System Object Code Using MATLAB Editor” on page 14-65

