Phased Array System Toolbox™
User's Guide

A

MATLAB&SIMULINK

R2016a <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Phased Array System Toolbox™ User's Guide
© COPYRIGHT 2011-2016 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 1.0 (R2011a)
Revised for Version 1.1 (R2011b)
Revised for Version 1.2 (R2012a)
Revised for Version 1.3 (R2012b)
Revised for Version 2.0 (R2013a)
Revised for Version 2.1 (R2013b)
Revised for Version 2.2 (R2014a)
Revised for Version 2.3 (R2014b)
Revised for Version 3.0 (R2015a)
Revised for Version 3.1 (R2015b)
Revised for Version 3.2 (R2016a)

Contents

Phased Arrays

Antenna and Microphone Elements

1

Isotropic Antenna Element 1-2
Support for Isotropic Antenna Elements 1-2
Backbaffled Isotropic Antenna 1-2
Response of Backbaffled Isotropic Antenna Element . . . 1-5

Cosine Antenna Element 1-7
Support for Cosine Antenna Elements 1-7
Concentrating Cosine Antenna Response 1-7
Plot 3-D Response of Cosine Antenna Element 1-9

Custom Antenna Element 1-11
Support for Custom Antenna Elements 1-11
Antenna with Custom Radiation Pattern 1-11

Omnidirectional Microphone 1-14
Support for Omnidirectional Microphones 1-14
Backbaffled Omnidirectional Microphone 1-14

Custom Microphone Element 1-19
Support for Custom Microphone Elements 1-19
Custom Cardioid Microphone Pattern 1-19

Short-dipole Antenna Element 1-21
Short-Dipole Polarization Components 1-23

Crossed-dipole Antenna Element 1-25
LHCP and RHCP Polarization Components 1-26

vi

Contents

Using Antenna Toolbox with Phased Array Systems . .

1-29

Array Geometries and Analysis

2|

Uniform Linear Array
Support for Uniform Linear Arrays
Positions of Elements in Array
Identical Elements in Array
Response of Array Elements
Signal Delay Between Array Elements
Steering Vector
Array Response
Reception of Plane Wave Across Array

Microphone ULA Array

Uniform Rectangular Array
Support for Uniform Rectangular Arrays
Uniform Rectangular Array of Isotropic Antenna

Elements i

Conformal Array
Support for Arrays with Custom Geometry
Create Default Conformal Array
Uniform Circular Array Created from Conformal Array
Custom Antenna Array

Subarrays Within Arrays
Definition of Subarrays
Benefits of Using Subarrays
Support for Subarrays Within Arrays
Rectangular Array Partitioned into Linear Subarrays .
Linear Subarray Replicated to Form Rectangular Array
Linear Subarray Replicated in a Custom Grid

Phased Array Appst
Plot Array Directivity Using Sensor Array Analyzer

ADD o e

2-2
2-2
2-2
2-3
2-4
2-4
2-5
2-6
2-7

2-9

2-12
2-12

2-12

2-16
2-16
2-16
2-17
2-19

2-23
2-23
2-23
2-23
2-24
2-28
2-30

2-33

2-33

Signal Radiation and Collection

3

Signal Radiation 3-2
Support for Modeling Signal Radiation 3-2
Radiate Signal with Uniform Linear Array 3-2

Signal Collection 3-4
Support for Modeling Signal Collection 3-4
Narrowband Collector for Uniform Linear Array 3-5
Narrowband Collector for a Single Antenna Element . . . 3-6
Wideband Signal Collection 3-7

Waveforms, Transmitter, and Receiver

4

Rectangular Pulse Waveforms 4-2
Definition of Rectangular Pulse Waveform 4-2
How to Create Rectangular Pulse Waveforms 4-2
Rectangular Waveform Plot 4-2
Pulses of Rectangular Waveform 4-4

Linear Frequency Modulated Pulse Waveforms 4-6
Benefits of Using Linear FM Pulse Waveform 4-6
Definition of Linear FM Pulse Waveform 4-6
How to Create Linear FM Pulse Waveforms 4-7
Configure Linear FM Pulse Waveform 4-8
Linear FM Pulse Waveform Plot 4-8
Ambiguity Function of Linear FM Waveform 4-10
Compare Autocorrelation for Rectangular and Linear FM

Waveforms e 4-12

Stepped FM Pulse Waveforms 4-14

FMCW Waveforms00, 4-16
Benefits of Using FMCW Waveform 4-16
How to Create FMCW Waveforms 4-16
Double Triangular Sweep, 4-17

vii

viii

Phase-Coded Waveforms 4-19

When to Use Phase-Coded Waveforms 4-19
How to Create Phase-Coded Waveforms 4-19
Basic Radar Using Phase-Coded Waveform 4-20
Waveforms with Staggered PRFs 4-23
When to Use Staggered PRFs 4-23
Linear FM Waveform with Staggered PRF 4-23
Plot Spectrogram Using Radar Waveform Analyzer App . . 4-25
Transmitter 4-28
Transmitter Object 4-28
Phase Noise i 4-30
Receiver Preamp, 4-34
Operation of Receiver Preamp 4-34
Configuring Receiver Preamp 4-34
Model Receiver Effects on Sinusoidal Input 4-36
Model Coherent on Receive Behavior 4-38
Radar Equation 4-40
Radar Equation Theory 4-40
Link Budget Calculation Using the Radar Equation 4-41
Maximum Detectable Range for a Monostatic Radar 4-42
Output SNR at the Receiver in a Bistatic Radar 4-43
Display Vertical Coverage Diagram 4-44

Compute Peak Power Using Radar Equation Calculator

ADPP . 4-45
Beamforming

Conventional Beamforming 5-2
Uses for Beamformers 5-2
Support for Conventional Beamforming 5-2
Narrowband Phase Shift Beamformer with a ULA 5-2

Contents

6/

Adaptive Beamforming 5-7

Benefits of Adaptive Beamforming 5-7
Support for Adaptive Beamforming 5-7
LCMV Beamformer 0., 5-7
Wideband Beamforming 5-11
Support for Wideband Beamforming 5-11
Time-Delay Beamforming of Microphone ULA Array 5-11
Visualization of Wideband Beamformer Performance 5-13
Time-Delay Beamforming of Microphone ULA Array 5-18
Visualization of Wideband Beamformer Performance 5-20

Direction-of-Arrival (DOA) Estimation

Beamscan Direction-of-Arrival Estimation 6-2
Super-Resolution DOA Estimation 6-4
Target Tracking Using Sum-Difference Monopulse Radar . . 6-8

Space-Time Adaptive Processing (STAP)

7]

Angle-Doppler Response 7-2
Benefits of Visualizing Angle-Doppler Response 7-2
Angle-Doppler Response of a Stationary Target at a Stationary

Array . .. 7-2
Angle-Doppler Response of a Stationary Target Return at a
Moving Arrayt 7-4

Displaced Phase Center Antenna (DPCA) Pulse Canceller . . 7-8
When to Use the DPCA Pulse Canceller 7-8
Example: DPCA Pulse Canceller for Clutter Rejection 7-8

ix

X

Contents

8

Adaptive Displaced Phase Center Antenna Pulse Canceller 7-13
When to Use the Adaptive DPCA Pulse Canceller 7-13
Example: Adaptive DPCA Pulse Canceller 7-13

Sample Matrix Inversion (SMI) Beamformer 7-18
When to Use the SMI Beamformer 7-18
Example: Sample Matrix Inversion (SMI) Beamformer 7-18

Detection

Neyman-Pearson Hypothesis Testing 8-2
Purpose of Hypothesis Testing 8-2
Support for Neyman-Pearson Hypothesis Testing 8-2
Threshold for Real-Valued Signal in White Gaussian Noise . . 8-3
Threshold for Two Pulses of Real-Valued Signal in White

Gaussian NoOISeottt e 8-4
Threshold for Complex-Valued Signals in Complex White
Gaussian NOISeottt e e 8-5

Receiver Operating Characteristic (ROC) Curves 8-7

Monte-Carlo ROC Simulation 8-12

Matched Filtering 8-22
Reasons for Using Matched Filtering 8-22
Support for Matched Filtering 8-22
Matched Filtering of Linear FM Waveform 8-22
Matched Filtering to Improve SNR for Target Detection . . . 8-24

Stretch Processing 8-28
Reasons for Using Stretch Processing 8-28
Support for Stretch Processing 8-28
Stretch Processing Procedure 8-28

FMCW Range Estimation 8-30

Range-Doppler Response 8-32
Benefits of Producing Range-Doppler Response 8-32
Support for Range-Doppler Processing 8-32

Range-Speed Response Pattern of Target

Constant False-Alarm Rate (CFAR) Detectors
Reasons for Using CFAR Detectors

Cell-Averaging CFAR Detector
Testing CFAR Detector Adaption to Noisy Input Data

Extensions of Cell-Averaging CFAR Detector .
Detection Probability for CFAR Detector

Measure Intensity Levels Using the Intensity Scope
RTI and DTI Displays in Full Radar Simulation

8-34

8-38
8-38
8-39
8-41
8-42
8-42

8-45
8-46

Environment and Target Models

9

Free Space Path Loss
Support for Modeling Propagation in Free Space
Free Space Path Loss in Decibels
Propagation of a Linear FM Pulse Waveform to and from a

Target
One-Way and Two-Way Propagation
Propagation from Stationary Radar to Moving

Two-Ray Multipath Propagation
Free-Space Propagation of Wideband Signals
Radar Target

Swerling 1 Target Models

Swerling Target Models

Swerling 3 Target Models

Swerling 4 Target Models

Clutter Modeling
Surface Clutter Overview

Approaches for Clutter Simulation or Analysis

Target

9-2
9-2
9-2

9-4

9-5

9-9

9-12

9-14

9-18

9-23

9-29

9-34

9-40

9-40
9-40

xi

xii

Contents

Considerations for Setting Up a Constant Gamma Clutter
Simulation e
Related Examples

Barrage Jammer
Support for Modeling Barrage Jammer
Model Barrage Jammer Output
Model Effect of Barrage Jammer on Target Echo

9-41
9-42

9-43
9-43
9-43
9-45

Coordinate Systems and Motion Modeling

10

Rectangular Coordinates
Definitions of Coordinates
Notation for Vectors and Points
Orthogonal Basis and Euclidean Norm
Orientation of Coordinate Axes
Rotations and Rotation Matrices

Spherical Coordinates
Support for Spherical Coordinates
Azimuth and Elevation Angles
Phi and Theta Angles
U and V Coordinates,
Conversion from Rectangular and Spherical Coordinates . .
Broadside Angle

Global and Local Coordinate Systems
Global Coordinate System
Local Coordinate Systems
Converting Between Global and Local Coordinate Systems

Global and Local Coordinate Systems Radar Example . ..

Motion Modeling in Phased Array Systems
Support for Motion Modeling
Platform Motion with Constant Velocity
Platform Motion with Nonconstant Velocity
Track Range and Angle Changes Between Platforms

10-2
10-2
10-4
10-4
10-4
10-5

10-13
10-13
10-13
10-14
10-15
10-16
10-17

10-21
10-21
10-21
10-40

10-42

10-52
10-52
10-53
10-54
10-55

Model Motion of Circling Airplane 10-57

Doppler Shift and Pulse-Doppler Processing 10-60
Support for Pulse-Doppler Processing 10-60
Converting Speed to Doppler Shift 10-60
Converting Doppler Shift to Speed 10-61
Pulse-Doppler Processing of Slow-Time Data 10-61

Using Polarization

11

Polarized Fields 11-2
Introduction to Polarization 11-2
Linear and Circular Polarization 11-4
Elliptic Polarization v, . 11-9
Linear and Circular Polarization Bases 11-13
Sources of Polarized Fields 11-17
Scattering Cross-Section Matrix 11-25
Polarization Loss Due to Field and Receiver Mismatch . .. 11-29
Polarization Example 11-31

Antenna and Array Definitions

12|

Element and Array Radiation and Response Patterns 12-2
Element Response and Radiation Patterns 12-2
Array Response and Radiation Patterns 12-6
Create Grating Lobe Diagram for Microphone URA 12-10

Code Generation

13

Code Generation 13-2
Code Generation Use and Benefits 13-2

xiii

xiv

Contents

Limitations Specific to Phased Array System Toolbox 13-3

General Limitations, 13-6
Limitations for System Objects that Require Dynamic Memory
Allocationcoiiii i 13-11

Generate MEX Function to Estimate Directions of Arrival 13-12

Generate MEX Function Containing Persistent System
Objects i e 13-15

Functions and System Objects Supported for C/C++ Code
Generation 13-18

Define New System Objects

14|

Define Basic System Objects 14-3
Change Number of Step Inputs or Outputs 14-6
Validate Property and Input Values 14-10
Initialize Properties and Setup One-Time Calculations . . 14-13
Set Property Values at Construction Time 14-16
Reset Algorithm State 14-18
Define Property Attributes 14-20
Hide Inactive Properties 14-24
Limit Property Values to Finite String Set 14-26
Process Tuned Properties 14-29
Release System Object Resources 14-31
Define Composite System Objects 14-33

Define Finite Source Objects 14-36

Save System Object 14-38
Load System Object 14-42
Define System Object Information 14-46
Add Data Types Tab to MATLAB System Block 14-48
Add Button to MATLAB System Block 14-50
Specify Locked Input Size 14-53
Set Model Reference Discrete Sample Time Inheritance . 14-55
Methods Timing 14-57
Setup Method Call Sequence 14-57
Step Method Call Sequence 14-58
Reset Method Call Sequence 14-58
Release Method Call Sequence 14-59

System Object Input Arguments and ~ in Code Examples 14-60

What Are Mixin Classes? 14-61
Best Practices for Defining System Objects 14-62
Insert System Object Code Using MATLAB Editor 14-65
Define System Objects with Code Insertion 14-65
Create Fahrenheit Temperature String Set 14-68
Create Custom Property for Freezing Point 14-69
Define Input Size As Locked 14-70
Analyze System Object Code 14-72
View and Navigate System object Code 14-72
Example: Go to StepImpl Method Using Analyzer 14-72
Define System Object for Use in Simulink 14-75
Develop System Object for Use in System Block 14-75
Define Block Dialog Box for Plot Ramp 14-76

Xv

Phased Arrays

Antenna and Microphone Elements

* “Isotropic Antenna Element” on page 1-2

+ “Cosine Antenna Element” on page 1-7

* “Custom Antenna Element” on page 1-11

* “Omnidirectional Microphone” on page 1-14

* “Custom Microphone Element” on page 1-19

* “Short-dipole Antenna Element” on page 1-21

* “Crossed-dipole Antenna Element” on page 1-25

+ “Using Antenna Toolbox with Phased Array Systems” on page 1-29

1 Antenna and Microphone Elements

Isotropic Antenna Element

1-2

In this section...

“Support for Isotropic Antenna Elements” on page 1-2
“Backbaffled Isotropic Antenna” on page 1-2
“Response of Backbaffled Isotropic Antenna Element” on page 1-5

Support for Isotropic Antenna Elements

An isotropic antenna element radiates equal power in all directions. If the antenna
element is backbaffled, the antenna radiates equal power in all directions for which the
azimuth angle satisfies ~90 < ¢ < 90 and zero power in all other directions. To construct
an isotropic antenna, use the phased.IsotropicAntennaElement System object™. When
you use this object, you must specify these antenna properties:

* The operating frequency range of the antenna using the FrequencyRange property.

* Whether or not the response of the antenna is backbaffled at azimuth angles outside
the interval [~90,90] using the BackBaffled property.

You can determine the voltage response of the isotropic antenna element at specified
frequencies and angles using the step method.

Backbaffled Isotropic Antenna

This example shows how to construct a backbaffled isotropic antenna element with a
uniform frequency response over a range of azimuth angles from [-180,180] degrees and
elevation angles from [-90,90] degrees. The antenna operates between 300 Mhz and 1
GHz.

slsoAnt = phased. IsotropicAntennakElement(. ..
"FrequencyRange” ,[300e6 1e9], "BackBaffled",false);
pattern(slsoAnt,1e9,[-180:180],[-90:90], "CoordinateSystem”, "polar™, ...
"Type*®, "power™)

Isotropic Antenna Element

3D Response Pattern

12

0.5

Mormalized Power

0.6

0.4

0.2

Using the antenna pattern method, plot the antenna response at zero degrees elevaton

for all azimuth angles at 1 GHz.

pattern(slsoAnt,1e9,[-180:180],0, "CoordinateSystem”, "rectangular”®, ...
"Type*®, "powerdb™)

1-3

1 Antenna and Microphone Elements

Azimuth Cut (elevation angle = 0.0)

=
o
T
1

o

o
T
1

=

=%
T
I

o
P
T
1

Mormalized Power (dB)

__1 i i i i i i i
=200 -150 -100 -50 0 50 100 150 200

Azimuth Angle (degrees)

Setting the BackBaffled property to true restricts the antenna response to azimuth
angles in the interval [-90,90] degrees. In this case, plot the antenna response in three
dimensions.

slsoAnt.BackBaffled = true;

pattern(slsoAnt,1e9,[-180:180],[-90:90], "CoordinateSystem®, "polar”, ...
"Type*, "power"™)

1-4

Isotropic Antenna Element

Response of Backbaffled Isotropic Antenna Element

This example shows how to design a backbaffled isotropic antenna element and obtain
its response. First, construct an X-band isotropic antenna element that operates from
8 to 12 GHz setting the Backbaffle property to true. Obtain the antenna element
response at 4, 10, and 14 GHz at azimuth angles between -100 and 100 degrees in 50
degree increments. All elevation angles are by default equal to zero.

slsoAnt = phased.lsotropicAntennaElement(. ..
"FrequencyRange”,[8e9 12e9], "BackBaffled",true);

respfreqgs

3D Response Pattern

z
Az 0

.FIQD

Az 90
EIOQ

= [6:4:14]*1e9;

respazangles = -100:50:100;

anresp = step(slsoAnt,respfreqgs, respazangles)

1049

10.48

10.7

0.5

0.4

0.3

0.2

0.1

Mormalized Power

1-5

1 Antenna and Microphone Elements

anresp =
0 0 0
0 1 0
0 1 0
0 1 0
0 0 0

The antenna response in anresp is a matrix having row dimension equal to the number
of azimuth angles in respazangles and column dimension equal to the number

of frequencies in respfreqs. The response voltage in the first and last columns of
anresp are zero because those columns contain the antenna response at 6 and 14 GHz,
respectively. These frequencies lie outside the antenna operating frequency range.
Similarly, the first and last rows of anresp contain all zeros because BackBaffled
property is set to true. The first and last row contain the antenna response at azimuth
angles outside of [-90,90].

To obtain the antenna response at nonzero elevation angles, input the angles to step as
a 2-by-M matrix where each column is an angle in the form [azimuth;elevation].

release(slsoAnt)

respelangles = -90:45:90;

respangles = [respazangles; respelangles];
anresp = step(slsoAnt,respfregs,respangles)

anresp =
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0

Notice that anresp(1,2) and anresp(5,2) represent the antenna voltage response at
the azimuth-elevation angle pairs (-100,-90) and (100,90) degrees. Although the azimuth
angles lie in the baffled region, because the elevation angles are equal to +/- 90 degrees,
the responses are unity. In this case, the resulting elevation cut degenerates to a point.

Cosine Antenna Element

Cosine Antenna Element

In this section...

“Support for Cosine Antenna Elements” on page 1-7

“Concentrating Cosine Antenna Response” on page 1-7

“Plot 3-D Response of Cosine Antenna Element” on page 1-9

Support for Cosine Antenna Elements

The phased.CosineAntennaElement object models an antenna element whose response
follows a cosine function raised to a specified power in both the azimuth and elevation
directions.

The cosine response, or cosine pattern, is given by:

P(az,el) = cos™ (az)cos" (el)

In this expression:

* azis the azimuth angle.
* el is the elevation angle.

* The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between —90 and 90 degrees,
inclusive. There is no response at the back of a cosine antenna. The cosine response
pattern achieves a maximum value of 1 at 0 degrees azimuth and elevation. Raising the
response pattern to powers greater than one concentrates the response in azimuth or
elevation.

When you use the cosine antenna element, you specify the exponents of the cosine
pattern using the CosinePower property and the operating frequency range of the
antenna using the FrequencyRange property.

Concentrating Cosine Antenna Response

This example shows the effect of concentrating the cosine antenna response by increasing
the exponent of the cosine factor. The example computes and plots the cosine response for

1-7

1 Antenna and Microphone Elements

exponents equal to 1 and 2 for a single angle between -90 and 90 degrees. The angle can
represent azimuth or elevation.

theta = -90:.01:90;

costhl cosd(theta);

costh?2 costhl.”2;

plot(theta,costhl)

hold on

plot(theta,costh2,"r")

hold off

legend("Exponent = 1%, "Exponent = 2" ,"location”, "northeast”);
xlabel ("Angle (degrees™)

ylabel ("Response*®)

Cosine Antenna Element

Response

Exponent = 1
Exponent =2

08 J, f;" \\ “ |

L ;oS \\ \ i
0.7 _.-"' / Y

0.6 /o Vo I
0.5 FA Voo 1
0.4 [
0.3 [LY -

i I.J) I"n, II'-_‘
02t / o]

o1r [/ / o

0 | i i i i i i i [
-100 -80 -60 =40 =20 1] 20 40 G0 80 100

Angle (degrees

Plot 3-D Response of Cosine Antenna Element

This example shows how to construct an antenna with a cosine-squared response in both
azimuth and elevation. The operating frequency range of the antenna is 1 to 10 GHz. Plot
the 3-D antenna response at 5 GHz.

sCos = phased.CosineAntennaElement(. ..
"FrequencyRange”,[1 10]*1e9, "CosinePower™,[2 2]);
pattern(sCos,5e9,[-180:180],[-90:90], "CoordinateSystem”, ...
"Polar®, "Type", "powerdb™)

1-9

1 Antenna and Microphone Elements

3D Response Pattern

Az 90
ElD

1-10

Mormalized Power (dB)

Custom Antenna Element

Custom Antenna Element

In this section...

“Support for Custom Antenna Elements” on page 1-11

“Antenna with Custom Radiation Pattern” on page 1-11

Support for Custom Antenna Elements

The phased.CustomAntennaElement object enables you to model a custom antenna
element. When you use phased.CustomAntennaElement, you must specify these
aspects of the antenna:

* Operating frequency vector for the antenna element

* Frequency response of the element at the frequencies in the operating frequency
vector

* Azimuth angles and elevation angles where the custom response is evaluated

* Magnitude radiation pattern. This pattern shows the spatial response of the antenna
at the azimuth and elevation angles you specify.

Tip You can import a radiation pattern that uses u/v coordinates or ¢/0

angles, instead of azimuth/elevation angles. To use such a pattern with
phased.CustomAntennaElement, first convert your pattern to azimuth/elevation
form. Use uv2azelpat or phitheta2azelpat to do the conversion. For an example,
see Antenna Array Analysis with Custom Radiation Pattern.

For your custom antenna element, the antenna response (the output of step) depends

on the frequency response and radiation pattern. Specifically, the frequency and spatial
responses are interpolated separately using nearest-neighbor interpolation and then
multiplied together to produce the total response. To avoid interpolation errors, the
range of azimuth angles should include +/— 180 degrees and the range of elevation angles
should include +/— 90 degrees.

Antenna with Custom Radiation Pattern
This example shows how to construct a custom antenna element object. The radiation

pattern is independent of azimuth angle and has a cosine pattern for the elevation
angles.

1-11

../examples/antenna-array-analysis-with-custom-radiation-pattern.html

1 Antenna and Microphone Elements

1-12

az = -180:90:180;

el = -90:45:90;

elresp = cosd(el);

sCust = phased.CustomAntennaElement("AzimuthAngles®,az, ...
"ElevationAngles®,el, ...
"RadiationPattern”,repmat(elresp”,1,numel(az)));

Show the radiation pattern.
disp(sCust.RadiationPattern)

0 0 0 0 0
0.7071 0.7071 0.7071 0.7071 0.7071
1.0000 1.0000 1.0000 1.0000 1.0000
0.7071 0.7071 0.7071 0.7071 0.7071

0 0 0 0 0

Use the step method to calculate the antenna response at the azimuth-elevation pairs
(-80,0) and (-45,0) at 500 Mhz.

ang = [-30 0; -45 0];
resp = step(sCust,500e6,ang);
disp(resp)

1.0848
1.1220

The following illustrates the nearest-neighbor interpolation method used to find the
antenna voltage response in the two directions. The total response is the product of the
angular response and the frequency response.

g = interp2(degtorad(sCust.AzimuthAngles), ...
degtorad(sCust.ElevationAngles), ...
db2mag(sCust.RadiationPattern), . ..
degtorad(ang(l1,:))", degtorad(ang(2,:))", "nearest”,0);

h = interpl(sCust.FrequencyVector, ...
db2mag(sCust.FrequencyResponse) ,500e6, "nearest”,0);

antresp = h.*g;

Compare the value of antresp to the output of the step method.

disp(antresp)

1.0848

Custom Antenna Element

1.1220

1-13

1 Antenna and Microphone Elements

Omnidirectional Microphone

In this section...

“Support for Omnidirectional Microphones” on page 1-14
“Backbaffled Omnidirectional Microphone” on page 1-14

Support for Omnidirectional Microphones

An omnidirectional microphone has a response which is equal to one in all nonbaffled
directions. The phased.OmnidirectionalMicrophoneElement object enables you to model
an omnidirectional microphone. When you use this object, you must specify these aspects
of the microphone:

* The operating frequency range of the microphone using the FrequencyRange
property.

* Whether the response of the microphone is baffled at azimuth angles outside the
interval [~90,90] degrees using the BackBaffled property.

Backbaffled Omnidirectional Microphone

Construct an omnidirectional microphone element having a response within the human
audible frequency range of 20 to 20,000 Hz. Baffle the microphone response for azimuth
angles outside of +/- 90 degrees. Plot in polar form the microphone power response at 1
kHz.

freq = l1le3;
smic = phased.OmnidirectionalMicrophoneElement(. ..
"BackBaffled",true, "FrequencyRange”,[20 20e3]);
pattern(smic,freq, [-180:180],[-90:90], "CoordinateSystem®, "polar®, "Type", "power");

1-14

Omnidirectional Microphone

3D Response Pattern 1

z
Az 0

_FIQD

0.6

0.5

Az 90 0.4
ElO

Mormalized Power

0.3
0.2

0.1

In many applications, you sometimes need to examine the microphone directionality,
or polar pattern. To obtain an azimuth cut, set the elevation argument of the pattern
method to a single angle such as zero.

pattern(smic,freq,[-180:180],0, "CoordinateSystem”, "polar®, "Type~, "power");

1-15

1 Antenna and Microphone Elements

Azimuth Cut (elev

90

m :

ation angle = 0.0)
1

— &

0.8

H\'\

0.6

TR

180

Mormalized Fower

"(

X>
i

-90

Mormalized Power, Broadside at 0.00 degrees

To obtain an elevation cut, set the azimuth argument of the pattern method to a single

angle such as zero.

pattern(smic,freq,0,[-90:90], "CoordinateSystem”, "polar”, "Type", "power™);

1-16

Omnidirectional Microphone

Elevation Cut (azimuth angle = 0.0°)
20
’

— &0

0.8 -

-

m ; au
W

o8

180

c‘cv
A m

-120

Mormalized Fower

-90

Mormalized Power, Broadside at 0.00 degrees

Use the step method to obtain the microphone magnitude response at the specified
azimuth angles and frequencies. By default, when the ang argument is a single row,
the elevation angles are 0 degrees. Note the response is unity at all azimuth angles and
frequencies, as expected.

freqs = [100:250:1e3];
ang = [-90:30:90];
micresp = step(smic,fregs,ang)

micresp =
1 1 1 1
1 1 1 1

1-17

1 Antenna and Microphone Elements

PR RRR
PR RRPR
PR RRPR

1-18

RRRRR

Custom Microphone Element

Custom Microphone Element

In this section...

“Support for Custom Microphone Elements” on page 1-19
“Custom Cardioid Microphone Pattern” on page 1-19

Support for Custom Microphone Elements

You can model a microphone with a custom response pattern using
phased.CustomMicrophoneElement System object. The total response of a custom
microphone element is a combination of its frequency response and spatial response.
phased.CustomMicrophoneElement calculates both responses using nearest
neighbor interpolation and then multiplies them to form the total response. When the
PolarPatternFrequencies property value is nonscalar, the object specifies multiple
polar patterns. In this case, the interpolation uses the polar pattern that is measured
closest to the specified frequency. When you use phased.CustomMicrophoneElement,
you must specify these microphone attributes.:

* Frequencies where you specify your response using the FrequencyVector property.

* Response corresponding to the specified frequencies using the FrequencyResponse
property.

+ Frequencies and angles at which the microphone’s polar pattern is measured.

* Magnitude response of the microphone.

Custom Cardioid Microphone Pattern

Create a custom cardioid microphone, and plot the power response pattern at 500 and
800 Hz.

sCustMic = phased.CustomMicrophoneElement;

sCustMic.PolarPatternFrequencies = [500 1000];

sCustMic.PolarPattern = mag2db([...
0.5+0.5*cosd(sCustMic.PolarPatternAngles);...
0.6+0.4*cosd(sCustMic.PolarPatternAngles)]);

pattern(sCustMic, [500,800],[-180:180],0, "Type~", "powerdb®)

1-19

1 Antenna and Microphone Elements

1-20

Normalized FPower (dB)

Azimuth Cut (elevation angle = 0.0')

Mormalized Power (dB), Broadside at 0.00 degrees

Related Examples
“Microphone ULA Array” on page 2-9

— 500 Hz
— 800 Hz

Short-dipole Antenna Element

Short-dipole Antenna Element

When you want to explicitly study the effects of polarization in a radar or
communication system, you need to specify an antenna that can generate polarized
radiation. One such antenna is the short-dipole antenna, created by using the
phased.ShortDipoleAntennaElement.

The simplest polarized antenna is the dipole antenna which consist of a split length of
wire coupled at the middle to a coaxial cable. The simplest dipole, from a mathematical
perspective, is the Hertzian dipole, in which the length of wire is much shorter than a
wavelength. A diagram of the short dipole antenna of length L appears in the next figure.
This antenna is fed by a coaxial feed which splits into two equal length wires of length
L/2. The current, I, moves along the z-axis and is assumed to be the same at all points in
the wire.

1-21

1 Antenna and Microphone Elements

-L/2

The electric field in the far field has the form

E =0
iZoll e
=— Ccose
v 2A r

The next example computes the vertical and horizontal polarization components of the
field. The vertical component is a function of elevation angle and is axially symmetric.
The horizontal component vanishes everywhere.

1-22

Short-dipole Antenna Element

Short-Dipole Polarization Components

Compute the vertical and horizontal polarization components of the field created by a
short-dipole antenna pointed along the z-direction. Plot the components as a function of
elevation angle from 0° to 360°.

Create the phased.ShortDipoleAntennaElement System object™.

sSD = phased.ShortDipoleAntennaElement(. ..
"FrequencyRange”,[1,2]*1e9, "AxisDirection”,"Z");

Compute the antenna response. Because the elevation angle argument to the step
method is restricted to £90°, first construct the response for 0° azimuth, and then for

180° azimuth. Combine the two responses. The operating frequency of the antenna is 1.5
GHz.

el = [-90:90];

az = zeros(size(el));

fc = 1.5e9;

resp = step(sSD,fc,[az;el]);

az = 180.0*ones(size(el));
respl = step(sSD,fc,[az;el]);

Overlay the responses in the same figure.

figure(l);

subplot(121);

polar(el*pi/180.0,abs(resp.V."),"b")

hold on

polar((el+180)*pi/180.0,abs(respl.V."),"b")

str = sprintf("%s\n%s", "Vertical Polarization®","vs Elevation Angle®);
title(str)

hold off

subplot(122);

polar(el*pi/180.0,abs(resp.H."),"b")

hold on

polar((el+180)*pi/180.0,abs(respl.H."),"b")

str = sprintf("%s\n%s", "Horizontal Polarization®,"vs Elevation Angle®);
title(str)

hold off

1-23

1 Antenna and Microphone Elements

Vertical Polarization Horizontal Polarization
vs Elevation Angle vs Elevation Angle
a0 1.5 o0 1
120 B0 120 60
150 0. 70 30 150 0.5 30
180 0 180 1]
210 330 210 330
240 300 240 300
270 270

The plot shows that the horizontal component vanishes, as expected.

1-24

Crossed-dipole Antenna Element

Crossed-dipole Antenna Element

Another antenna that produces polarized radiation is the crossed-dipole antenna, created
by using the phased.CrossedDipoleAntennaElement.

You can use a cross-dipole antenna to generate circularly-polarized radiation. The
crossed-dipole antenna consists of two identical but orthogonal short-dipole antennas
that are phased 90° apart. A diagram of the crossed dipole antenna appears in the
following figure. The electric field created by a crossed-dipole antenna constructed from a
y-directed short dipole and a z-directed short dipole has the form

E. =0
iZ,IL ek
Ey =——0"cosaz
" 24 r
. —ikr
v = ZoIL (sinelsinaz + icosel) ¢

r

The polarization ratio Ey/Ey, when evaluated along the x-axis, is just - which means
that the polarization is exactly RHCP along the x-axis. It is predominantly RHCP
when the observation point is close to the x-axis. Moving away from the x-axis, the field
becomes a mixture of LHCP and RHCP polarizations. Along the —x-axis, the field is
LHCP polarized. The figure illustrates, for a point near the x, that the field is primarily
RHCP.

1-25

1 Antenna and Microphone Elements

1-26

The next example computes the circularly polarized field components. You can see how
the circular polarization changes from pure RHCP at 0° azimuth angle to LHCP at 180°
azimuth angle, both at 0° elevation.

LHCP and RHCP Polarization Components
Plot the right-handed and left-handed circular polarization components at 1.5 GHz.

Create the phased.CrossedDipoleAntennaElement System object™.

fc = 1.5e9;
sCD = phased.CrossedDipoleAntennaElement("FrequencyRange”®,[1,2]*1e9);

Crossed-dipole Antenna Element

Compute the left-handed and right-handed circular polarization components.

az = [-180:180];

el = zeros(size(az));

resp = step(sCD,fc,[az;el]);

cfv = pol2circpol([resp-H.-";resp.-V."]);
clhp = cfv(l,:);

crhp = cfv(2,:);

Plot both circular polarization components at 0° elevation.

polar(az*pi/180.0,abs(clhp))

hold on

polar(az*pi/180.0,abs(crhp))

title("LHCP and RHCP vs Azithmuth Angle®);
legend("LHCP", "RHCP")

hold off

1-27

1 Antenna and Microphone Elements

1-28

LHCP and RHCP vs Azithmuth Angle
20
2

——LHCP

120
—— RHCP

1.5

\

x‘

o

">< K

240 300

Using Antenna Toolbox with Phased Array Systems

Using Antenna Toolbox with Phased Array Systems

When you create antenna arrays such as a uniform linear array (ULA), you can use
antennas that are built into Phased Array System Toolbox™. Alternatively, you can

use Antenna Toolbox™ antennas. Antenna Toolbox antennas provide realistic models of
physical antennas. They are designed using method of moments. Phased array antennas
represent more idealized antennas that are useful for radar performance analysis and
higher level modelling. Some phased array antennas cannot be physically realized, such
as the isotropic antenna but are still conceptually useful. You can build and analyze
systems using both types of antennas in an identical manner. This example shows how to
construct a phased array with either Phased Array System Toolbox or Antenna Toolbox™
antennas.

When you use an Antenna Toolbox™ antenna in a Phased Array System Toolbox™
System Object™, the antenna response will be normalized by the maximum value of
the antenna output over all directions. The maximum value is obtained by finding the
maximum of the antenna pattern sampled every five degrees in azimuth and elevation.

Construct ULA of Crossed-Dipole Antennas from Phased Array System Toolbox

Start by creating a uniform linear array (ULA) of crossed-dipole antennas from Phased
Array System Toolbox. Crossed-dipole antennas are used to produce circularly-polarized
signals. In this case, set the operating frequency to 2 GHZ and draw the power pattern.
Use the pattern method of the phased.CrossedDipoleAntennaElement System
object™.,

fc = 2.0e9;
sCD = phased.CrossedDipoleAntennaElement("FrequencyRange”,[500,2500]*1e6);
pattern(sCD, fc,[-180:180],0,. ..

"Type*®, "powerdb®)

1-29

1 Antenna and Microphone Elements

1-30

Azimuth Cut (elevation angle = 0.0)

90
120 60
-1
. 150 30
% - -2 "’
g !)
g W2
o180 |] 0
Qi
8 7N\
AN (‘
= N
=
=150 =30

-120

-90

60

Mormalized Power (dB), Broadside at 0.00 degrees

The main axis of this antenna points along the x-axis.

Then, create an 11-element ULA array of crossed-dipole antennas. Specify the element
spacing to be 0.4 wavelengths. Taper the array using a Taylor window. Then, draw the
array pattern as a function of azimuth at 0 degrees elevation. Use the pattern method

of the phased.ULA System object.

c = physconst(“LightSpeed®);
elemspacing = 0.4*c/fc;
nElements = 11;

SULA1 = phased.ULA("Element®,sCD, "NumElements” ,nElements, ...
"ElementSpacing” ,elemspacing, "Taper” ,taylorwin(nElements)*);
pattern(sULA1,fc,[-180:180],0, "PropagationSpeed”,c, - - -

"Type*®, "powerdb*®)

Using Antenna Toolbox with Phased Array Systems

Azimuth Cut (elevation angle = 0.0)

CIU

120

180

Mormalized Power (dB)

-150

-120
-90

Mormalized Power (dB), Broadside at 0.00 degrees

Construct ULA of Helix Antennas from Antenna Toolbox

Next, create a uniform linear array (ULA) using the helix antenna from Antenna
Toolbox. Helix antennas also produce circularly polarized radiation. Helix antennas are
created using the hel ix function.

First, specify a 4-turn helix antenna having a 28.0 mm radius and 1.2 mm width. The
TiltAxis and Ti It properties let you orient the antenna with respect to the local
coordinate system. In this example, orient the main response axis (MRA) along the x -
axis to coincide with the MRA of the cross-dipole main axis. By default, the MRA of the
antenna points in the z -direction. Rotate the MRA around the y -axis by 90 degrees.

radius = 0.028;

1-31

1 Antenna and Microphone Elements

width = 1.2e-3;
nturns = 4;

sHelix = helix("Radius”,radius, "Width" ,width, "Turns”,nturns, . . .
"TiltAxis",[0,1,0],"Tilt",90);

You can view the shape of the helix antenna use the show function from Antenna
Toolbox.
show(sHelix)
helix antenna element
0.05
E
" 0

-0.05

y{m}

x {m)

Then, draw the azimuth antenna pattern at 0 degrees elevation at the operating
frequency of 2 GHz. Use the pattern function from Antenna Toolbox.

pattern(sHelix, fc,[-180:180],0,-.

1-32

Using Antenna Toolbox with Phased Array Systems

"Type*, "powerdb*®)

powerdb (dB)

80
120 =20 G0
150

180

210

240 300
Peaks (Datazet 1) 270

1. -20.06

Next, construct an 11-element tapered uniform linear array of helix antennas with
elements spaced at 0.4 wavelengths. Taper the array with a Taylor window. You can use
the same phased.ULA System object from Phased Array System Toolbox to create this
array.

SsULA2 = phased.ULA("Element”,sHelix, "NumElements”,nElements, ...
"ElementSpacing”,elemspacing, "Taper” ,taylorwin(nElements)”);

Plot the array pattern as a function of azimuth using the ULA pattern method which has
the same syntax as the Antenna Toolbox pattern function.

pattern(sULA2,fc,[-180:180],0, "PropagationSpeed”,c, - - -

1-33

1 Antenna and Microphone Elements

"Type*®, "powerdb*®)

Azimuth Cut (elevation angle = 0.0)
0 9
120 60

)
':'g' 180 ’ k‘* - _ N
g) —INSS
’ ' -
‘

150 -30

=120 =60
=50

Mormalized Power (dB), Broadside at 0.00 degrees

Compare Patterns

Comparing the two array patterns shows that they are similar along the mainlobe. The
backlobe of the helix antenna array pattern is almost 15 dB smaller than that of the
crossed-dipole array. This is due to the presence of the ground plane of the helix antenna
which reduces backlobe transmission.

1-34

Array Geometries and Analysis

* “Uniform Linear Array” on page 2-2

+ “Microphone ULA Array” on page 2-9

* “Uniform Rectangular Array” on page 2-12
* “Conformal Array” on page 2-16

+ “Subarrays Within Arrays” on page 2-23

+ “Phased Array Apps” on page 2-33

2 Array Geometries and Analysis

Uniform Linear Array

2-2

In this section...

“Support for Uniform Linear Arrays” on page 2-2
“Positions of Elements in Array” on page 2-2
“Identical Elements in Array” on page 2-3
“Response of Array Elements” on page 2-4

“Signal Delay Between Array Elements” on page 2-4
“Steering Vector” on page 2-5

“Array Response” on page 2-6

“Reception of Plane Wave Across Array” on page 2-7

Support for Uniform Linear Arrays

The uniform linear array (ULA) arranges identical sensor elements along a line in space
with uniform spacing. You can design a ULA with phased.ULA. When you use this object,
you must specify these aspects of the array:

+ Sensor elements of the array
+ Spacing between array elements

* Number of elements in the array

Positions of Elements in Array

Create and view a ULA with two isotropic antenna elements separated by 0.5 meters:

hula = phased.ULA("NumElements®,2, "ElementSpacing”,0.5);
viewArray(hula);

Uniform Linear Array

Figure 1 [E=R|E=R|=|

File Edit View Insert Tools Desktop Window Help L

j_’?'lﬂila [% +\-_\-®@Q¢fz'@) DE m O

Array Geometry

Aperture Size:
Yaxis=1m
Element Spacing:
Aoy = 500 mm
Array Axiz Y axis

You can return the coordinates of the array sensor elements in the form [x;y;z] by
using the getElementPosition method. See “Rectangular Coordinates” on page 10-2

for toolbox conventions.

sensorpos = getElementPosition(hula);

Sensorpos is a 3-by-2 matrix with each column representing the position of a sensor
element. Note that the y-axis is the array axis. The positive x-axis is the array look
direction (0 degrees broadside). The elements are symmetric with the respect to the

phase center of the array.

Identical Elements in Array

The default element for a ULA is the phased.IsotropicAntennaElement object. You can

specify an alternative element by changing the Element property.

2 Array Geometries and Analysis

Response of Array Elements

To obtain the responses of your array elements, use the array’s step method.

% Construct antenna for the array elements

hant = phased.lsotropicAntennaElement(. ..
"FrequencyRange”,[3e8 1e9]);

hula = phased.ULA("NumElements®,2, "ElementSpacing”,0.5, ...
"Element” ,hant);

% Obtain element responses at 1 GHz

freq = 1le9;

% for azimuth angles from -180:180

azangles = -180:180;

% elementresponses

elementresponses = step(hula,le9,azangles);

elementresponses is a 2-by-361 matrix where each column contains the element
responses for the 361 azimuth angles. Because the elements of the ULA are isotropic
antennas, elementresponses is a matrix of ones.

Signal Delay Between Array Elements

To determine the signal delay in seconds between array elements, use
phased.ElementDelay. The incident waveform is assumed to satisfy the far-field
assumption.

The following example computes the delay between elements of a 4-element ULA for

a signal incident on the array from —90 degrees azimuth and zero degrees elevation.

The delays are computed with respect to the phase center of the array. By default,
phased.ElementDelay assumes that the incident waveform is an electromagnetic wave
propagating at the speed of light.

% Construct 4-element ULA using value-only syntax
hula = phased.ULA(4);

hdelay = phased.ElementDelay("SensorArray” ,hula);
tau = step(hdelay,[-90;0]);

tau is a 4-by-1 vector of delays with respect to the phase center of the array, which is
the origin of the local coordinate system [0;0;0]. See “Global and Local Coordinate
Systems” on page 10-21 for a description of global and local coordinate systems.
Negative delays indicate that the signal arrives at an element before reaching the phase
center of the array. Because the waveform arrives from an azimuth angle of —90 degrees,

Uniform Linear Array

the signal impinges on the first and second elements of the ULA before it reaches the
phase center resulting in negative delays.

If the signal is incident on the array at 0 degrees broadside from a far-field source, the
signal illuminates all elements of the array simultaneously resulting in zero delay.

tau = step(hdelay,[0;0]);

If the incident signal is an acoustic pressure waveform propagating at the speed of sound,
you can calculate the element delays by specifying the PropagationSpeed property.

hdelay = phased.ElementDelay("SensorArray” ,hula,...
"PropagationSpeed”,340);
tau = step(hdelay,[90;0]);

In the preceding code, the propagation speed is set to 340 m/s, which is the approximate
speed of sound at sea level.

Steering Vector

The steering vector represents the relative phase shifts for the incident far-field
waveform across the array elements. You can determine these phase shifts with the
phased.SteeringVector object.

For a single carrier frequency, the steering vector for a ULA consisting of N elements is:
e j2rft,
e j2rft,

e—j27rfr3

e—j277,'f‘L'N

where t, denotes the time delay relative to the array phase center at the n-th array
element.

Compute the steering vector for a 4-element ULA with an operating frequency of 1 GHz.
Assume that the waveform is incident on the array from 45 degrees azimuth and 10
degrees elevation.

2 Array Geometries and Analysis

hula = phased.ULA(4);
hsv = phased.SteeringVector("SensorArray”,hula);
sv = step(hsv,1e9,[45; 10]);

You can obtain the steering vector with the following equivalent code.

hdelay = phased.ElementDelay("SensorArray”,hula);
tau = step(hdelay,[45;10]);
exp(-1j*2*pi*1le9*tau)

Array Response

To obtain the array response, which is a weighted-combination of the steering vector
elements for each incident angle, use phased.ArrayResponse.

Construct a two-element ULA with elements spaced at 0.5 m. Obtain the array’s
magnitude response (absolute value of the complex-valued array response) for azimuth
angles -180:180 and plot the normalized magnitude response in decibels.

hula = phased.ULA("NumElements®,2, "ElementSpacing”,0.5);
azangles = -180:180;

har = phased.ArrayResponse("SensorArray”,hula);

resp = abs(step(har,1le9,azangles));
plot(azangles,mag2db((resp/max(resp))));

grid on;

title("Azimuth Cut at Zero Degrees Elevation®);

xlabel ("Azimuth Angle (degrees)®);

B Fourct oo ==

File Edit View Insert Tools Desktop Window Help k]
DEHds [M| ARRODEAL-|E|0H| O

Azimuth Cut at Zero Degrees Elevation

-20

-30

40

-60

60 i i i i i i i
-200 150 -100 -50 0 50 100 150 200
Azimuth Angle (degrees)

Uniform Linear Array

Visualize the array response using the plotResponse method. This example uses options
to create a 3-D plot of the response in u/v space; other plotting options are available.

figure;
plotResponse(hula,1e9,physconst("LightSpeed®), ...
"Format*®,"UV", "RespCut”,"3D")

u Figure 2 EI@

File Edit View Inset Tools Desktop Window Help k]

Dgde | AR OBDEL- |2 |08 | D

3D Response Pattern in u-v space

Mormalized Power (dB)

Reception of Plane Wave Across Array

You can simulate the effects of phase shifts across your array using the collectPlaneWave
method.

The col lectPlaneWave method modulates input signals by the element of the steering
vector corresponding to an array element. Stated differently, col lectPlaneWave
accounts for phase shifts across elements in the array based on the angle of arrival.
However, col lectPlaneWave does not account for the response of individual elements
in the array.

Simulate the reception of a 100-Hz sine wave modulated by a carrier frequency of 1 GHz
at a 4-element ULA. Assume the angle of arrival of the signal is [-90; O].

hula = phased.ULA(4);

t = unigrid(0,0.001,0.01,"[)");
% signals must be column vectors
X = cos(2*pi*100*t) " ;

2 Array Geometries and Analysis

2-8

y = collectPlaneWave(hula,x,[-90;0],1e9,physconst("LightSpeed®));
The preceding code is equivalent to the following.
hsv = phased.SteeringVector("SensorArray”,hula);

sv = step(hsv,1e9,[-90;0]);
yl X*sv.";

Related Examples
. “Microphone ULA Array” on page 2-9

Microphone ULA Array

Microphone ULA Array

This example shows how to construct and visualize a four-element ULA with custom
cardioid microphone elements. Specify the polar pattern frequencies as 500 and 1000 Hz.

Create a microphone element with a cardioid response pattern. Use the default values of
the FrequencyVector property.

freq = [500 1000];

sMic = phased.CustomMicrophoneElement(. ..
"PolarPatternFrequencies”,freq);

sMic.PolarPattern= mag2db([---
0.5+0.5*cosd(sMic.PolarPatternAngles);...
0.6+0.4*cosd(sMic.PolarPatternAngles)]);

Plot the polar pattern of the microphone at 0.5 kHz and 1 kHz.

pattern(sMic,freq,[-180:180],0, "CoordinateSystem”, "polar”,"Type", "powerdb”, . ..
"Normalize”,true);

2-9

2 Array Geometries and Analysis

Azimuth Cut (elevation angle = 0.0°)

— 0.5 kHz
— 1.0 kHz

150
(s}
=
g
o
S 180
1]
M
T
E
[=]
z
-150

Mormalized Power (dB), BEroadside at 0.00 degrees

Construct a ULA of custom microphone elements.

sULA = phased.ULA("NumElements”,4, "ElementSpacing”,0.5,...
"Element”,sMic);

Plot the response of the array at 0.5 kHz and 1 kHz.

pattern(sULA,freq,[-180:180],0, "CoordinateSystem”, "polar”, "Type", "powerdb”, . ..
"Normalize”,true, "PropagationSpeed”,340.0);

2-10

Microphone ULA Array

Normalized Power (dB)

Azimuth Cut {(elevation angle = ﬂ.ﬂﬂ]

90 g

120 60

— 0.5 kHz
— 1.0 kHz

ﬁ“*\‘ \

180 —

\ \"\‘\ﬁ@ =

-890

0

Mormalized Power (dB), BEroadside at 0.00 degrees

2-11

2 Array Geometries and Analysis

Uniform Rectangular Array

2-12

In this section...

“Support for Uniform Rectangular Arrays” on page 2-12

“Uniform Rectangular Array of Isotropic Antenna Elements” on page 2-12

Support for Uniform Rectangular Arrays

You can implement a uniform rectangular array (URA) with phased.URA. Array
elements are distributed in the yz-plane with the array look direction along the positive
x-axis. When you use phased.URA, you must specify these aspects of the array:

+ Sensor elements of the array
* Number of rows and the spacing between them

* Number of columns and the spacing between them

* Geometry of the planar lattice, which can be rectangular or triangular

Uniform Rectangular Array of Isotropic Antenna Elements

This example shows you how to create a uniform rectangular array (URA) and obtain
information about the element positions, the array response, and inter-element time
delays. Then, simulate the reception of two sine waves coming from different directions.
Both signals have a 1GHz carrier frequency.

Create the URA and obtain the element positions

Create and view a six-element URA with two elements along the y-axis and three
elements along the z-axis. Use a rectangular lattice, with the default spacing of 0.5
meters along both the row and column dimensions of the array. Each element is an
isotropic antenna element, which is the default element type for a URA.

fc = 1le9;

sURA = phased.URA([3,2]);
viewArray(sURA)

pos = getElementPosition(sURA);

Uniform Rectangular Array

Array Geometry

The x-coordinate is zero for all elements of the array.
Compute the element delays

Calculate the element delays for signals arriving from +45 and -45 degrees azimuth and
0 degrees elevation.

sElemDelay = phased.ElementDelay("SensorArray”,sURA);
ang = [45,-45];
tau = step(skElemDelay,ang);

The first column of tau contains the element delays for the signal incident on the array
from +45 degrees azimuth. The second column contains the delays for the signal arriving
from -45 degrees. The delays are equal in magnitude but opposite in sign, as expected.

2-13

2 Array Geometries and Analysis

Compute the received signals

The following code simulates the reception of two sinusoidal waves arriving from far
field sources. One signal is a 100-Hz sine wave arriving from 20 degrees azimuth and
10 degrees elevation. The second signal is a 300-Hz sine wave arriving from -30 degrees
azimuth and 5 degrees elevation.

t = linspace(0,1,1000);

x1 = cos(2*pi*100*t) " ;

X2 = cos(2*pi*300*t) " ;

angl = [20;10];

ang2 = [-30;5];

recsig = collectPlaneWave(sURA, [x1 x2],[angl ang2],fc);

Each column of recsig represents the received signals at the corresponding element of
the URA.

Plot the array response in 3D

You can plot the array response using the pattern method.

pattern(sURA, fc,[-180:180],[-90:90], "PropagationSpeed®,physconst(“LightSpeed®), ...

"CoordinateSystem®, "rectangular®,"Type~", "powerdb®)

2-14

Uniform Rectangular Array

-10

-20

=30

-40

-50

-60

=70

-B0

=an

2-15

2 Array Geometries and Analysis

Conformal Array

2-16

In this section...

“Support for Arrays with Custom Geometry” on page 2-16
“Create Default Conformal Array” on page 2-16

“Uniform Circular Array Created from Conformal Array” on page 2-17

“Custom Antenna Array” on page 2-19

Support for Arrays with Custom Geometry

The phased.ConformalArray object lets you model a phased array with arbitrary
geometry. For example, you can use phased.ConformalArray to design:

* A planar array with a nonrectangular geometry, such as a circular array
* An array with nonuniform geometry, such as a linear array with variable spacing

* A nonplanar array

When you use phased.ConformalArray, you must specify these aspects of the array:

+ Sensor element of the array
+ Element positions

* Direction normal to each array element

Create Default Conformal Array

To create a conformal array with default properties, use this command:

sConfArray = phased.ConformalArray

sConfArray =
phased.ConformalArray with properties:

Element: [1x1 phased.lsotropicAntennaElement]
ElementPosition: [3x1 double]

Conformal Array

ElementNormal: [2x1 double]
Taper: 1

This default conformal array consists of a single phased.LinearFMWaveform sensor
element located at the origin of the local coordinate system. The direction normal to the
sensor element is 0° azimuth and 0° elevation.

Uniform Circular Array Created from Conformal Array

This example shows how to construct a 60-element uniform circular array. In
constructing a uniform circular array, you can use either the phased.UCA or the
phased.ConformalArray System object™. The conformal array approach is more general
because it allows you to point the array elements in arbitrary directions. A UCA restricts
the array normals to lie in the plane of the array. This example illustrates how you can
use the phased.ConformalArray System object™ to create any other array shape. Assume
an operating frequency of 400 MHz. Tune the array by specifying the arclength between
the elements to be 0.5\ where A is the wavelength corresponding to the operating
frequency. Array elements lie in the x-y-plane. Element normal directions are set to

(@, 0} where @n is the azimuth angle of the n'" array element.

Set the number of elements and the operating frequency of the array.

N = 60;
fc = 400e6;

Compute the element spacing in radians.

theta = 360/N;
thetarad = degtorad(theta);

Choose the radius so that the inter-element arclength is one-half wavelength.

arclength = 0.5*(physconst("LightSpeed®)/fc);
radius = arclength/thetarad;

Compute the element azimuth angles. Azimuth angles must lie in the range (-180°,180°).
ang = (0:N-1)*theta;

ang(ang >= 180.0) = ang(ang >= 180.0) - 360.0;
sUCA = phased.ConformalArray;

2-17

2 Array Geometries and Analysis

sUCA_ElementPosition = [radius*cosd(ang);- - -
radius*sind(ang);. ..
zeros(1,N)];

sUCA_ElementNormal = [ang;zeros(1,N)];

Show the UCA array geometry.

viewArray(sUCA)

Array Geometry

.

[B

Plot the array response pattern at 1 GHz.

pattern(sUCA,1e9,[-180:180],0, "PropagationSpeed” ,physconst("LightSpeed”), . ..
"CoordinateSystem®, "polar®, "Type*, "powerdb”, "Normalize",true)

2-18

Conformal Array

Normalized FPower (dB)

/ . “\\\\\\\}%

TN
R

-120 -60
-80
Custom Antenna Array
This example shows how to construct and visualize a custom-geometry array containing

antenna elements with a custom radiation pattern. The radiation pattern of each element
is constant over each azimuth angle and has a cosine pattern for the elevation angles.

Define the custom antenna element and plot its radiation pattern.

az = -180:180;

el = -90:90;

fc = 3e8;

elresp = cosd(el);

sCust = phased.CustomAntennaElement(*AzimuthAngles”®,az, ...

2-19

2 Array Geometries and Analysis

"ElevationAngles®,el, ...
"RadiationPattern”,repmat(elresp”,1,numel(az)));

pattern(sCust,3e8,0,el,"CoordinateSystem”, "polar”, "Type", "powerdb”, . ..
“Normalize”,true);

Elevation Cut (azimuth angle = 0.0°)

Q

E 180 . i 0
P AR

Mormalized Power (dB), Broadside at 0.00 degrees

Define the locations and normal directions of the elements. All elements lie in the z-
plane. The elements are located at (1,0;0) , (0;1,0), and (0;-1,0) meters. The element
normal azimuth angles are 0°, 120°, and -120°, respectively. All normal elevation angles

are 0°.

xpos = [1 0 0];

ypos = [0 1 -1];

zpos = [0 O 0];
normal_az = [0 120 -120];

2-20

Conformal Array

normal_el = [0 0 0];
Define a conformal array with those elements.
sConfArray = phased.ConformalArray("Element”,sCust, ...

"ElementPosition”, [Xpos; ypos; zpos],---
“ElementNormal®, [normal_az; normal_el]);

Plot the positions and normal directions of the elements.

viewArray(sConfArray, "ShowNormals® ,true)
view(0,90)

Array Geometry

fd
3

pattern(sConfArray,fc,az,el,"CoordinateSystem®, "polar®, "Type", "powerdb”, . ..

2-21

2 Array Geometries and Analysis

2-22

“Normalize®,true, "PropagationSpeed” ,physconst("“LightSpeed”))

Az 90
ElD

-5

-10

-15

-20

=23

-30

-35

-40

-45

Subarrays Within Arrays

Subarrays Within Arrays

In this section...

“Definition of Subarrays” on page 2-23

“Benefits of Using Subarrays” on page 2-23

“Support for Subarrays Within Arrays” on page 2-23

“Rectangular Array Partitioned into Linear Subarrays” on page 2-24

“Linear Subarray Replicated to Form Rectangular Array” on page 2-28

“Linear Subarray Replicated in a Custom Grid” on page 2-30

Definition of Subarrays

In Phased Array System Toolbox™ software, a subarray is an accessible subset of array
elements. When you use an array that contains subarrays, you can access measurements
from the subarrays but not from the individual elements. Similarly, you can perform
processing at the subarray level but not at the level of the individual elements. As a
result, the system has fewer degrees of freedom than if you controlled the system at the
level of the individual elements.

Benefits of Using Subarrays

Radar applications often use subarrays because operations, such as phase shifting and
analog-to-digital conversion, are too expensive to implement for each element. It is less
expensive to group the elements of an array through hardware, thus creating subarrays
within the array. Grouping elements through hardware limits access to measurements
and processing to the subarray level.

Support for Subarrays Within Arrays

To work with subarrays, you must define the array and the subarrays within it. You can
either define the array first or begin with the subarray. Choose one of these approaches:

+ Define one subarray, and then build a larger array by arranging copies of the
subarray. The subarray can be a ULA, URA, or conformal array. The copies are
identical, except for their location and orientation. You can arrange the copies
spatially in a grid or a custom layout.

2-23

2 Array Geometries and Analysis

When you use this approach, you build the large array by creating a
phased.ReplicatedSubarray System object. This object stores information about the
subarray and how the copies of it are arranged to form the larger array.

* Define an array, and then partition it into subarrays. The array can be a ULA, URA,
or conformal array. The subarrays do not need to be identical. A given array element
can be in more than one subarray, leading to overlapped subarrays.

When you use this approach, you partition your array by creating a
phased.PartitionedArray System object. This object stores information about the
array and its subarray structure.

After you create a phased.ReplicatedSubarray or phased.PartitionedArray
object, you can use it to perform beamforming, steering, or other operations. To do so,
specify your object as the value of the SensorArray or Sensor property in objects that
have such a property and that support subarrays. Objects that support subarrays in their
SensorArray or Sensor property include:

+ phased.AngleDopplerResponse

* phased.ArrayGain

+ phased.ArrayResponse

+ phased.Collector

+ phased.ConstantGammaClutter

+ phased.MVDRBeamformer

+ phased.PhaseShiftBeamformer

* phased.Radiator

* phased.STAPSMIBeamformer

+ phased.SteeringVector

* phased.SubbandPhaseShiftBeamformer

+ phased.WidebandCollector

Rectangular Array Partitioned into Linear Subarrays

This example shows how to set up a rectangular array containing linear subarrays. The
example also finds the phase centers of the subarrays.

2-24

Subarrays Within Arrays

Create a 2-by-3 rectangular array.

sURA = phased.URA("Size",[2 3]);

Plot the positions of the array elements in the yz-plane (all x-coordinates are zero.)
Include labels that indicate the numbering of the elements. The numbering is important
for selecting which elements are included in each subarray.

viewArray(sURA, “"ShowlIndex”, "All")

Array Geometry

Pl =

Create and view an array consisting of three 2-element linear subarrays each parallel to
the z-axis. Use the indices from the plot to form the matrix for the SubarraySelection

property. The getSubarrayPosition method returns the phase centers of the three
subarrays.

2-25

2 Array Geometries and Analysis

2-26

subarrayl = [110000; 001100; 00001 1];

sPAl1 = phased.PartitionedArray(“Array”,sURA, ...
"SubarraySelection”®,subarrayl);

viewArray(sPAl)

subarrayposl = getSubarrayPosition(sPAl)

subarrayposl =
0 0 0
-0.5000 0 0.5000
0 0 0

Array Geometry

Subarrays Within Arrays

Create and view another array consisting of two 3-element linear subarrays parallel to
the y-axis. Using the getSubarrayPosition method, find the phase centers of the two
subarrays.

subarray2 = [0 101 01; 1010 10];

sPA2 = phased.PartitionedArray("Array”,sURA, ...
"SubarraySelection”,subarray?);

viewArray(sPA2)

subarraypos2 = getSubarrayPosition(sPA2)

subarraypos2 =
0 0
0 0

-0.2500 0.2500

2-27

2 Array Geometries and Analysis

2-28

Array Geometry

Linear Subarray Replicated to Form Rectangular Array

This example shows how to arrange copies of a linear subarray to form a rectangular
array.

Create a 4-element linear array parallel to the y-axis.
sULA = phased.ULA("NumElements”,4);

Create a rectangular array by arranging two copies of the linear array.

sRepSub = phased.ReplicatedSubarray("“Subarray”,sULA, "GridSize",[2 1]);

Subarrays Within Arrays

Plot the positions of the array elements and the phase centers of the subarrays. The
elements lie in the yz-plane because all the x-coordinates are zero.

viewArray(sRepSub);

hold on;

subarraypos = getSubarrayPosition(sRepSub);
sx = subarraypos(1,:);

sy = subarraypos(2,:);

sz subarraypos(3,:);
scatter3(sx,sy,sz,r*")

hold off

2-29

2 Array Geometries and Analysis

2-30

Array Geometry

2 e * @ @
2 @ e * @ @
Ty

Linear Subarray Replicated in a Custom Grid
This example shows how to arrange copies of a linear subarray in a triangular layout.

Create a 4-element linear array.

sCosAnt = phased.CosineAntennaElement("CosinePower”,1);
sULA = phased.ULA("NumElements”,4, "Element”,sCosAnt);

Create a larger array by arranging three copies of the linear array. Define the phase
centers and normal directions of the three copies explicitly.

vertex_ang = [60 180 -60];

Subarrays Within Arrays

vertex = 2*[cosd(vertex_ang); sind(vertex_ang); zeros(1,3)];
subarray_pos = 1/2*[...
(vertex(:,1)+vertex(:,2)) ...
(vertex(:,2)+vertex(:,3)) -.-.
(vertex(:,3)+vertex(:,1))];
sRepSub = phased.ReplicatedSubarray("Subarray®,sULA, ...
"Layout”, "Custom”, ...
"SubarrayPosition”®,subarray_pos,. ..
"SubarrayNormal *,[120 0;-120 0;0 0]-");

Plot the positions of the array elements and the phase centers of the subarrays. The plot
is in the xy-plane because all the z-coordinates are zero.

viewArray(sRepSub, "ShowSubarray”, [1)

hold on

scatter3(subarray_pos(1, :),subarray_pos(2,:),--.
subarray_pos(3,:),"r*")

hold off

2-31

2 Array Geometries and Analysis

Array Geometry

@
@
I* @
@
@
*
@
@
'aﬁ @
@
@

[]

Related Examples
. Subarrays in Phased Array Antennas

2-32

2150 m

2482 m

M

../examples/subarrays-in-phased-array-antennas.html

Phased Array Apps

Phased Array Apps

Plot Array Directivity Using Sensor Array Analyzer App

The sensorArrayAnalyzer is a Matlab™ App that lets you examine important
properties of a phased array such as shape and directivity.

Open sensorArrayAnalyzer App

When you type sensorArrayAnalyzer from the command line or select the app
from the App Toolstrip, an interactive window opens. The default window shows the
geometry of a 4-element uniform linear array. You can then select various options to
analyze different arrays, other element types, geometry, and directivity.

sensorArrayAnalyzer;

2-33

2 Array Geometries and Analysis

{4 Sensor Array Analyzer BN E
File Help L]

@ afl®

T ¥ Array Settings a

Array Type: |Uniform Linear Wl

Elemert Type: lsotropic Antenna adl
BackBaffled: [7]

Mumber of Elements: 4
Element Spacing: 0.5 m ~)
Arrary Axis: |y =
Signal Frequencies: |3e+08 Hz
Propagstion Speed: |3e+08 mis .
Steering: [

Taper: Mone x| .

Apply
@

¥ ¥ Visualization Settings 7

Wiew: | Array Geometry Wl ¥
Show Normals: [2

Show Index: [7] *

AAAdd

T ¥ Array Characteristics a
Array Directivity: 6.02 dBi &t 0 Az; DEl
Array Span: ¥=0my=15mz=0m

Mumber of Elements: 4

Create 3D Directivity Plot of 4-by-4 URA

As an example, use the app to create a 4-by-4 uniform rectangular array of cosine
antenna elements and then show the array directivity. Space the elements 0.4
wavelengths apart.

1 Set the Array Type to Uniform Rectangular
2 Set the Element Type to Cosine Antenna

2-34

Phased Array Apps

3 Set the Size of the arry to [4 4]

4 Set the Element Spacing to [0-4 0.4] wavelengths

5 Make sure to select the spacing units to wavelength

6 Select the Steering check box

7 Set the Steer Angle to [-30,0] to show a steered array
8 Choose the type of View as 3D Array Directivity

9 Choose the view Option as Polar to get a polar diagram
1

0 Select the Show Geometry check box to show the array shape as well

Then, you will see a plot of array directivity similar to this.

filenm = fullfile(matlabroot, "examples”, "phased”, "SensorArrayAnalyzerAppExample_02.png
im = imread(Filenm);

figure("Position”,[315 160 906 690])

image(im)

axis off

set(gca, "Position®,[0.078 0.077 0.845 0.896])

2-35

2 Array Geometries and Analysis

2-36

[#] Sensor Aray Analyzer

Tile llelp

2w AHEY
T ¥ Avvey Seed ling

Lrrey TYp2 | Urito-m Heclzngiar

Flzre il Typ= | Zosine Lnzenta
Cscin=s Powerr ([11]
Siza: [j4 4]
Elsment Spacing: ||U.5 15|
Cignal Froguenciea: | 22108
Latficz: | 3eciznglar
Fropegation 3peed: |J=+C0
steerng: 7]
Fow Taler | ycne

Colamn Tazer | ycne

Apply

7 ¥ Visualizetion Settingz
Wisw | 30 £rrey Diractuby
Tpliney | 2pia-
Show Geometry [J]

F ¥ Arrzy Characteristics
Array Lrectvty.

Arrmy Spat:

Number of Clenznts: 1G

Srg Al at v AL LE

x=Cmy=15mz=1.6m

dbads

3388

BEGe

3D Directivity Pattern
300 MHz Mo Steering

2
Al
=]

Arad

Ar D Ele

El0

W

-PE

=3C

Drrectwity (dBi)

Signal Radiation and Collection

+ “Signal Radiation” on page 3-2
+ “Signal Collection” on page 3-4

3 Signal Radiation and Collection

Signal Radiation

3-2

In this section...

“Support for Modeling Signal Radiation” on page 3-2
“Radiate Signal with Uniform Linear Array” on page 3-2

Support for Modeling Signal Radiation

You can use the phased.Radiator and phased.Collector objects to model narrowband
signal radiation and collection with an array. The array can be a single microphone or
antenna element, or an array of sensor elements.

To radiate a signal from a sensor array, use phased.Radiator. When you use this object,
you must specify these aspects of the radiator:

* Whether the output of all sensor elements is combined

* Operating frequency of the array

* Propagation speed of the wave

* Sensor (single element) or sensor array

+ Whether to apply weights to signals radiated by different elements in the array. If you
want to apply weights, you specify them when you call the step method.

Radiate Signal with Uniform Linear Array

Construct a radiator using a two-element ULA with elements spaced 0.5 meters apart
(the default ULA). The operating frequency is 300 MHz, the propagation speed is the
speed of light, and the element outputs are combined to simulate the far field radiation
pattern.

SULA = phased.ULA(*NumElements*®,2, "ElementSpacing”,0.5);
sRad = phased.Radiator("Sensor”,sULA, ...
"OperatingFrequency”,300e6, ...
"PropagationSpeed” ,physconst("LightSpeed®), ...
"CombineRadiatedSignals®,true);

Create a signal to radiate and propagate to the far field at an angle of (45°,0°) .

x=[1-11-1]";

Signal Radiation

y = step(sRad,x,[45;0]);

The far field signal results from multiplying the signal by the array pattern. The array
pattern is the product of the array element pattern and the array factor. For a uniform
linear array, the array factor is the superposition of elements in the steering vector
phased.SteeringVector

The following code produces an identical far-field signal by explicitly using the array
factor.

SULA = phased.ULA("NumElements®,2, "ElementSpacing”,0.5);
sSV = phased.SteeringVector("SensorArray”,sULA, . ..
"IncludeElementResponse”,true);
step(sSV,300e6,[45;0]);
x*sum(sv);

sv =
yl =

Compare y1 toy.

disp(yl-y)
0

0
0
0

3 Signal Radiation and Collection

Signal Collection

In this section...

“Support for Modeling Signal Collection” on page 3-4
“Narrowband Collector for Uniform Linear Array” on page 3-5
“Narrowband Collector for a Single Antenna Element” on page 3-6

“Wideband Signal Collection” on page 3-7

Support for Modeling Signal Collection

To model the collection of a signal with a sensor element or sensor array, you can use
the phased.Collector or phased.WideBandCollector. Both collector objects assume that
incident signals have propagated to the location of the array elements, but have not
been received by the array. In other words, the collector objects do not model the actual
reception by the array. See “Receiver Preamp” on page 4-34 for signal effects related

to the gain and internal noise of the array’s receiver.

In many array processing applications, the ratio of the signal’s bandwidth to the

carrier frequency is small. Expressed as a percentage, this ratio does not exceed a few
percent. Examples include radar applications where a pulse waveform is modulated

by a carrier frequency in the microwave range. These are narrowband signals. For
narrowband signals, you can express the steering vector as a function of a single
frequency, the carrier frequency. For narrowband signals, the phased.Col lector object
1s appropriate.

In other applications, the narrowband assumption is not justified. In many acoustic
and sonar applications, the wave impinging on the array is a pressure wave that

is unmodulated. It is not possible to express the steering vector as a function

of a single frequency. In these cases, the subband approach implemented in
phased.WidebandCollector is appropriate. The wideband collector decomposes the input
into subbands and computes the steering vector for each subband.

When you use the narrowband collector, phased.Collector, you must specify these aspects
of the collector:

* Operating frequency of the array

* Propagation speed of the wave

Signal Collection

* Sensor (single element) or sensor array

* Type of incoming wave. Choices are "Plane™ and "Unspecified”. If you select
"Plane”, the input signals are multiple plane waves impinging on the entire array.
Each plane wave is received by all collecting elements. If you select "Unspecified”,
the input signal are individual waves impinging on individual sensors.

* Whether to apply weights to signals collected by different elements in the array. If
you want to apply weights, you specify them when you call the step method.

When you use the wideband collector, phased. WidebandCollector, you must specify these
aspects of the collector:

+ Carrier frequency

* Whether the signal is demodulated to the baseband
+ Operating frequency of the array

+ Propagation speed of the wave

* Sampling rate

* Sensor (single element) or sensor array

* Type of incoming wave. Choices are "Plane™ and "Unspecified”. If you select
"Plane”, the input signals are multiple plane waves impinging on the entire array.
Each plane wave is received by all collecting elements. If you select "Unspecified”,
the input signal are individual waves impinging on individual sensors.

* Whether to apply weights to signals collected by different elements in the array. If
you want to apply weights, you specify them when you call the step method.

Narrowband Collector for Uniform Linear Array

This example shows how to construct a narrowband collector that models a plane wave
impinging on a two-element uniform linear array. The array has an element spacing of
0.5 m (default ULA). The operating frequency of the array is 300 MHz.

hula = phased.ULA("NumElements®,2, "ElementSpacing”,0.5);

hcol = phased.Collector("Sensor” ,hula,. ..
"PropagationSpeed” ,physconst("LightSpeed®), ...
"OperatingFrequency”,3e8, "Wavefront®,"Plane®)

% create signal to create

x =[1 -11 -1]7;

% simulate reception from an angle of [45;0]

= step(hcol,x,[45;0]);

<

3-5

3 Signal Radiation and Collection

In the preceding case, the collector object multiplies the input signal, X, by the
corresponding element of the steering vector for the two-element ULA. The following code
produces the response in an equivalent manner.

% default ULA

hula = phased.ULA("NumElements®,2,"ElementSpacing”,0.5);
% Construct steering vector

hsv = phased.SteeringVector("SensorArray”,hula);

sv = step(hsv,3e8,[45;0]);

x =[1 -1 1 -1]7;

yl = xX*sv.";

% compare yl to y

Narrowband Collector for a Single Antenna Element

The Sensor property of phased.Col lector can consist of a single antenna element. In
this example, create a custom antenna element using phased.CustomAntennaElement.
The antenna element has a cosine response over elevation angles from [-90,90] degrees.
Plot the polar pattern response of the antenna at 1 GHz using an elevation cut at zero
degrees azimuth. Determine the antenna voltage response at 0 degrees azimuth and 45
degrees elevation.

ha = phased.CustomAntennaElement;

ha.AzimuthAngles = -180:180;

ha.ElevationAngles = -90:90;

ha.RadiationPattern = mag2db(. ..
repmat(cosd(ha.ElevationAngles)*,1,numel (ha.AzimuthAngles)));

plotResponse(ha,l1le9, "Format”, "polar®, "RespCut”, "EI");

resp = step(ha,l1le9,[0; 45])

Signal Collection

B Figure 1 = | B o
File Edit View Insert Tools Desktop Window Help ~

DS kAR EL-S|0EH DO

Elevation Cut

Normalized Pover (dB)

£

Normalized Power (dB), Broadside at 0.00 degress

The antenna voltage response at zero degrees azimuth and 45 degrees elevation is
cosd(45) as expected.

Assume a narrowband sinusoidal input incident on the antenna element from 0 degrees
azimuth and 45 degrees elevation. Determine the signal collected at the element.

hc = phased.Collector("Sensor”®,ha, "OperatingFrequency”,1e9)
x =[1 -11 -1]";
y = step(hc,x,[0; 45]);

% equivalent to yl = x*cosd(45);

Wideband Signal Collection

This example shows how to simulate the reception of a wideband acoustic signal by a
single omnidirectional microphone element.

X = randn(10,1);

hmic = phased.OmnidirectionalMicrophoneElement(. ..
“FrequencyRange”,[20 20e3], "BackBaffled”,true)

hwb = phased.WidebandCollector("Sensor”,hmic, ...
"PropagationSpeed” ,340, "SampleRate” ,50e3, . . .
“"ModulatedInput”,false)

y = step(hwb,x,[30;10]);

Waveforms, Transmitter, and Receiver

“Rectangular Pulse Waveforms” on page 4-2

“Linear Frequency Modulated Pulse Waveforms” on page 4-6

“Stepped FM Pulse Waveforms” on page 4-14

“FMCW Waveforms” on page 4-16

“Phase-Coded Waveforms” on page 4-19

“Waveforms with Staggered PRFs” on page 4-23

“Plot Spectrogram Using Radar Waveform Analyzer App” on page 4-25
“Transmitter” on page 4-28

“Receiver Preamp” on page 4-34

“Radar Equation” on page 4-40

“Display Vertical Coverage Diagram” on page 4-44

“Compute Peak Power Using Radar Equation Calculator App” on page 4-45

4 Waveforms, Transmitter, and Receiver

Rectangular Pulse Waveforms

4-2

In this section...

“Definition of Rectangular Pulse Waveform” on page 4-2
“How to Create Rectangular Pulse Waveforms” on page 4-2

“Rectangular Waveform Plot” on page 4-2

“Pulses of Rectangular Waveform” on page 4-4

Definition of Rectangular Pulse Waveform

Define the following function of time:

(#) = 1 0<¢<t
av= 0 otherwise

Assume that a radar transmits a signal of the form:

x(t) = a(t)sin(w,t)

where ©. denotes the carrier frequency. Note that a(t) represents an on-off rectangular
amplitude modulation of the carrier frequency. After demodulation, the complex envelope
of x(t) is the real-valued rectangular pulse a(t) of duration t seconds.

How to Create Rectangular Pulse Waveforms

To create a rectangular pulse waveform, use phased.RectangularWaveform. You can

customize certain characteristics of the waveform, including:

+ Sampling rate
* Pulse duration
+ Pulse repetition frequency

* Number of samples or pulses in each vector that represents the waveform

Rectangular Waveform Plot

This example shows how to create a rectangular pulse waveform variable using
phased.RectangularWaveform . The example also plots the pulse and finds the

bandwidth of the pulse.

Rectangular Pulse Waveforms

Amplitude {v)

Construct a rectangular pulse waveform with a duration of 50 ps, a sample rate of 1
MHz, and a pulse repetition frequency (PRF) of 10 kHz.

sRect = phased.RectangularWaveform(*SampleRate~”,1le6, ...
"PulseWidth® ,50e-6, "PRF",10e3);

Plot a single rectangular pulse by calling plot directly on the rectangular waveform
variable. plot is a method of phased.RectangularWaveform. This method produces
an annotated graph of your pulse waveform.

plot(sRect)

Rectangular pulse waveform: real part, pulse 1
2 L] 1 1 1 1 L] 1 1

=
=2}
T
1

=
B
T
I

=

Ma
T
I

=
i

=
o
T
1

o
o
T

1

=
B
T
I

0.2r 7

D i i i i i i i i i
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 &

Time (s) w10

Find the bandwidth of the rectangular pulse.

4-3

4 Waveforms, Transmitter, and Receiver

bw

bandwidth(sRect)

bw =

20000

The bandwidth, bw, of a rectangular pulse in hertz is approximately the reciprocal of the
pulse duration 1/sRect.PulseWidth.

Pulses of Rectangular Waveform

This example shows how to create rectangular pulse waveform signals having different
durations. The example plots two pulses of each waveform.

Create a rectangular pulse with a duration of 100 ps and a PRF of 1 kHz. Set the number
of pulses in the output equal to two.

sRect = phased.RectangularWaveform("PulseWidth",100e-6, ...
"PRF*",1le3, "OutputFormat®, "Pulses”, "NumPulses” ,2);

Make a copy of your rectangular pulse and change the pulse width in your original
waveform to 10 ps.

sRectl = clone(sRect);
sRect.PulseWidth = 10e-6;

sRect and sRectl now specify different rectangular pulses because you changed the
pulse width of sRect.

Use the step method to return two pulses of your rectangular pulse waveforms.

y = step(sRect);
yl = step(sRectl);

Plot the real part of the waveforms.

totaldur = 2*1/sRect.PRF;

totnumsamp = totaldur*sRect.SampleRate;

t = unigrid(0,1/sRect._SampleRate,totaldur,"[)");
subplot(2,1,1)

plot(t.*1000,real(y)); axis([0 totaldur*1e3 0 1.5])
title("Two 10-\musec duration pulses (PRF = 1 kHz)")

Rectangular Pulse Waveforms

set(gca, "XTick",0:0.2:totaldur*1e3)

subplot(2,1,2)

plot(t-*1000,real (yl)); axis([0 totaldur*1e3 0 1.5])
xlabel ("Milliseconds*®)

title("Two 100-\musec duration pulses (PRF = 1 kHz)")
set(gca, "XTick",0:0.2:totaldur*1e3)

Two 10-usec duration pulses (PRF = 1 kHz)
'15 T T T T T T T T

0.5

D i i i i i i i i

0 02 04 06 08 1 12 14 16 18 2
Two 100-:sec duration pulses (PRF =1 kHz)
15 T T T T T T T T T
1 _
0.5 1
D 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2

Milliseconds

4-5

4 Waveforms, Transmitter, and Receiver

Linear Frequency Modulated Pulse Waveforms

4-6

In this section...

“Benefits of Using Linear FM Pulse Waveform” on page 4-6
“Definition of Linear FM Pulse Waveform” on page 4-6
“How to Create Linear FM Pulse Waveforms” on page 4-7
“Configure Linear FM Pulse Waveform” on page 4-8
“Linear FM Pulse Waveform Plot” on page 4-8

“Ambiguity Function of Linear FM Waveform” on page 4-10

“Compare Autocorrelation for Rectangular and Linear FM Waveforms” on page 4-12

Benefits of Using Linear FM Pulse Waveform

Increasing the duration of a transmitted pulse increases its energy and improves target
detection capability. Conversely, reducing the duration of a pulse improves the range
resolution of the radar.

For a rectangular pulse, the duration of the transmitted pulse and the processed echo are
effectively the same. Therefore, the range resolution of the radar and the target detection
capability are coupled in an inverse relationship.

Pulse compression techniques enable you to decouple the duration of the pulse from its
energy by effectively creating different durations for the transmitted pulse and processed
echo. Using a linear frequency modulated pulse waveform is a popular choice for pulse
compression.

Definition of Linear FM Pulse Waveform

The complex envelope of a linear FM pulse waveform with increasing instantaneous
frequency is:

.’)’E(t) — a(t)ejﬂ(ﬁ /‘L')L‘Z

where B is the bandwidth and T is the pulse duration.

If you denote the phase by O(t), the instantaneous frequency is:

Linear Frequency Modulated Pulse Waveforms

2r dt

1 dew) _B,
T

which is a linear function of ¢ with slope equal to B/t.

The complex envelope of a linear FM pulse waveform with decreasing instantaneous
frequency is:

%) = a(t)e /B! X))
Pulse compression waveforms have a time-bandwidth product, Bt, greater than 1.

How to Create Linear FM Pulse Waveforms

To create a linear FM pulse waveform, use phased.LinearFMWaveform. You can
customize certain characteristics of the waveform, including:

* Sample rate

* Duration of a single pulse
+ Pulse repetition frequency
* Sweep bandwidth

* Sweep direction (up or down), corresponding to increasing and decreasing
instantaneous frequency

+ Envelope, which describes the amplitude modulation of the pulse waveform. The
envelope can be rectangular or Gaussian.

The rectangular envelope is as follows, where T is the pulse duration.

@ 1 0<t<7t
al =
0 otherwise

+ The Gaussian envelope is:

at)y=e " 20

* Number of samples or pulses in each vector that represents the waveform

4 Waveforms, Transmitter, and Receiver

Configure Linear FM Pulse Waveform

This example shows how to create a linear FM pulse waveform using
phased.LinearFMWaveform. The example illustrates specific property settings.

Create a linear FM pulse with a sample rate of 1 MHz, a pulse duration of 50 pus with an
increasing instantaneous frequency, and a sweep bandwidth of 100 kHz. The amplitude
modulation is rectangular.

SLFM = phased.LinearFMWaveform("“SampleRate”,1e6, ...
"PullseWidth*,5e-5,"PRF",1e4, ...
"SweepBandwidth®,1le5, "SweepDirection®, "Up~,...

"Envelope”, "Rectangular”®, ...
"OutputFormat”, "Pulses”, "NumPulses”,1);

Linear FM Pulse Waveform Plot

This example shows how to design a linear FM (LFM) pulse waveform. The LFM
waveform has a duration of 100 microseconds, a bandwidth of 200 kHz, and a PRF of
4 kHz. Use the default values for the other properties. Compute the time-bandwidth
product. Plot the real part of the waveform and plot one full pulse repetition interval.

sLFM = phased.LinearFMWaveform("PulseWidth®,100e-6, ...
"SweepBandwidth®,2e5, "PRF",4000) ;

Display the time-bandwidth product of the FM sweep.
disp(sLFM.PulseWidth*sLFM.SweepBandwidth)

20

Plot the real part of the waveform.

plot(sLFM)

4-8

Linear Frequency Modulated Pulse Waveforms

Amplitude (v)

; Linear FM pulse waveform: real part, pulse 1
0.8+ \'-II / lll || II |{4|II || || ﬁ| 1 /‘ || i
06 ll'nll II|| I| || || || | | | I| |]
I BN RN -
0.4 E ! H | | | | |
0.2 r H J H f | | | |
0r II|I || L || | | |
L H J | | | | i
02 I|I I| || || |I | | ||
04 F h ! H | | | l | T
06} h f H f |a . H| i
08T ijf H/ h} h} h! I 4 H f s
\ | | | | u '

_1 i 1 Ill i I 1 1 1
1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s) w104

Use the step method to obtain one full repetition interval of the signal. Plot the real and
imaginary parts.

y step(sLFM);

t unigrid(0,1/sLFM._SampleRate,1/sLFM_PRF,"[)");
figure

subplot(2,1,1)
plot(t,real(y))

axis tight

title("Real Part™)
subplot(2,1,2)

plot(t, imag(y))
xlabel("Time (s)")
title(" Imaginary Part®)

4-9

4-10

4 Waveforms, Transmitter, and Receiver

axis tight

| Real Part
5 N hh | |
0.5 I"', |I I| |I| ||| ||| |1 H F| | _
". I|||| |||||H |i
0r I|II || || || |||||||||‘|H‘ H
o5k |III llll ||II| ||| |||| || || l] L J i
-1 YIREEA ' I
0 1 2
4
Imaginary Part 10
R |
st/ | | |||| ||| | |I]| || h _
| |I ||||||| w ‘
0 || |||||||||‘HH| |
05¢ I'| | ||| |I| | [|| || ” |
I'.'I luddl'liv'll' I
0 1 2
Time (s)

%107
Ambiguity Function of Linear FM Waveform

This example shows how to plot the ambiguity function of the linear FM pulse waveform
Define and set up the linear FM waveform.

SLFM = phased.LinearFMWaveform("PulseWidth®,100e-6, - ..
"SweepBandwidth*® ,2e5, "PRF" ,1e3);

Generate samples of the waveform.

wav = step(sLFM);

Linear Frequency Modulated Pulse Waveforms

Create a 3-D surface plot of the ambiguity function for the waveform.

[afmag_Ifm,delay_Ifm,doppler_Ifm] = ambgfun(wav, ...
sLFM_SampleRate,sLFM.PRF);

surf(delay_I1fm*1e6,doppler_Ifm/1le3,afmag_Ifm, ...
"LineStyle”, "none*)

axis tight

grid on

view([140,35])

colorbar

xlabel ("Delay \tau (\mus)®)

ylabel ("Doppler T _d (kHz)")

title("Linear FM Pulse Waveform Ambiguity Function®)

Linear FM Pulse Waveform Ambiguity Function

0.8 4 10.7

0.5

0.4

0.3

0.2

0.1

500 0
Doppler f, (kHz) 400 Delay 7 (11s)

4-11

4 Waveforms, Transmitter, and Receiver

4-12

The surface has a narrow ridge that is slightly tilted. The tilt indicates better resolution
in the zero delay cut.

Compare Autocorrelation for Rectangular and Linear FM Waveforms

This example shows how to compute and plot the ambiguity function magnitudes for
a rectangular and linear FM pulse waveform. The zero Doppler cut (magnitudes of
the autocorrelation sequences) illustrates pulse compression in the linear FM pulse
waveform.

Create a rectangular waveform and a linear FM pulse waveform having the same
duration and PRF. Generate samples of each waveform.

sRect = phased.RectangularWaveform("PRF",20e3);
SLFM = phased.LinearFMWaveform("PRF",20e3);
xrect = step(sRect);

xfm = step(sLFM);

Compute the ambiguity function magnitudes for each waveform.

[ambrect,delay] = ambgfun(xrect,sRect.SampleRate,sRect.PRF, ...
"Cut”®,"Doppler™);

ambfm = ambgfun(xfm,sLFM.SampleRate,sLFM_PRF, . ..
"Cut”®,"Doppler™);

Plot the ambiguity function magnitudes.

subplot(211)

stem(delay,ambrect)

title("Autocorrelation of Rectangular Pulse®)
axis([-5e-5 5e-5 0 1])

set(gca, "XTick",1le-5*(-5:5))

subplot(212)

stem(delay,ambfm)

xlabel ("Delay (seconds)”®)
title("Autocorrelation of Linear FM Pulse®)
axis([-5e-5 5e-5 0 1])

set(gca, "XTick",1le-5*(-5:5))

Linear Frequency Modulated Pulse Waveforms

Autocorrelation of Rectangular Pulse

1 I | | I<C§§§§s %E}>I | | |

o o

1 . . : g : : :
@

Delay (seconds) w102

Related Examples
. “Waveform Analysis Using the Ambiguity Function”

4-13

4 Waveforms, Transmitter, and Receiver

Stepped FM Pulse Waveforms

A stepped frequency pulse waveform consists of a series of N narrowband pulses. The
frequency is increased from step to step by a fixed amount, Af, in Hz.

Similar to linear FM pulse waveforms, stepped frequency waveforms are a popular pulse
compression technique. Using this approach enables you to increase the range resolution
of the radar without sacrificing target detection capability.

To create a stepped FM pulse waveform, use phased.SteppedFMWaveform.

The stepped frequency pulse waveform has the following modifiable properties:

+ SampleRate — Sampling rate in Hz

* PulseWidth — Pulse duration in seconds

* PRF — Pulse repetition frequency in Hz

* FrequencyStep — Frequency step in Hz

* NumSteps — Number of frequency steps

* OQOutputFormat — Output format in pulses or samples

* NumSamples — Number of samples in the output when the OutputFormat property
is "Samples”

* NumPulses — Number of pulses in the output when the OutputFormat property is
"Pulses*®

Enter the following to construct a stepped FM pulse waveform with a pulse duration
(width) of 50 ps, a PRF of 10 kHz, and five steps of 20 kHz. The sampling rate is 1 MHz.
By default the OutputFormat property is equal to "Pulses”™ and the number of pulses
in the output is equal to one. The example uses the bandwidth method to demonstrate
that the bandwidth of the stepped FM pulse waveform is the product of the frequency
step and the number of steps Obj . FrequencyStep*0bj .Numsteps.

hs = phased.SteppedFMWaveform(*SampleRate”,1e6, ...
"PulseWidth®,5e-5,"PRF",1e4, ...
"FrequencyStep*,2e4, *NumSteps*~,5);

bandwidth(hs)

% equal to hs.NumSteps*hs.FrequencyStep

Because the OutputFormat property is set to "Pulses”® and the NumPulses property is
set to 1, calling the step method returns one pulse repetition interval (PRI). The pulse

4-14

Stepped FM Pulse Waveforms

duration within that interval is equal to the PulseWidth property. The remainder of the
PRI consists of zeros.

The initial pulse has a frequency of zero, and is a DC pulse. With the NumPulses
property set to 1, each time you use step, the frequency of the narrowband pulse
increments by the value of the FrequencyStep property. If you call step more times
than the value of the NumSteps property, the process repeats, starting over with the DC
pulse.

Use step to return successively higher frequency pulses. Plot the pulses one by one in
the same figure window. Pause the loop to visualize the increment in frequency with each
successive call to step. Make an additional call to step to demonstrate that the process
starts over with the DC (rectangular) pulse.

t = unigrid(0,1/hs.SampleRate,1/hs.PRF,"[)");
for i = 1:hs.NumSteps

plot(t,real(step(hs)));

pause(0.5);

axis tight;
end
% calling step again starts over with a DC pulse
y = step(hs);

The next figure shows the plot in the final iteration of the loop.

B Figure1 =N e =

File Edit View Inset Tools Desktop Window Help L

DdHS | M ARKOBDEL- (S| 0EH ad

4-15

4 Waveforms, Transmitter, and Receiver

FMCW Waveforms

4-16

In this section...

“Benefits of Using FMCW Waveform” on page 4-16
“How to Create FMCW Waveforms” on page 4-16

“Double Triangular Sweep” on page 4-17

Benefits of Using FMCW Waveform

Radar systems that use frequency-modulated, continuous-wave (FMCW) waveforms are
typically smaller and less expensive to manufacture than pulsed radar systems. FMCW
waveforms can estimate the target range effectively, whereas the simplest continuous-
wave waveforms cannot.

FMCW waveforms are common in automotive radar systems and ground-penetrating
radar systems.

How to Create FMCW Waveforms

To create an FMCW waveform, use phased. FMCWWaveform. You can customize certain
characteristics of the waveform, including:

* Sample rate.

* Period and bandwidth of the FM sweep. These quantities can cycle through multiple
values during your simulation.

Tip To find targets up to a given maximum range, I, you can typically use a sweep
period of approximately 5*range2time(r) or 6*range2time(r). To achieve a
range resolution of delta_r, use a bandwidth of at least range2bw(delta_r).

* Sweep shape. This shape can be sawtooth (up or down) or triangular.

Tip For moving targets, you can use a triangular sweep to resolve ambiguity between
range and Doppler.

phased.FMCWWaveform assumes that all frequency modulations are linear. For
triangular sweeps, the slope of the down sweep is the opposite of the slope of the up
sweep.

FMCW Waveforms

Double Triangular Sweep

This example shows how to sample an FMCW waveform with a double triangular sweep
in which the two sweeps have different slopes. Then, the example plots a spectrogram.

Create an FMCW waveform object for which the SweepTime and SweepBandwidth
properties are vectors of length two. For each period, the waveform alternates between
the pairs of corresponding sweep time and bandwidth values.

st [1e-3 1.1e-3];

bw [1e5 9e4];

SFMCW = phased.FMCWWaveform(“SweepTime”,st, ...
"SweepBandwidth® ,bw, "SweepDirection®, "Triangle®, ...
"SweeplInterval ", "Symmetric®, "SampleRate”,2e5, ...
"NumSweeps” ,4);

Compute samples from four sweeps (two periods). In a triangular sweep, each period
consists of an up sweep and down sweep.

X = step(sFMCW);

Plot a spectrogram.

[S,F,T] = spectrogram(x,32,16,32,sFMCW.SampleRate);
image (T, fftshift(F), fftshift(mag2db(abs(S))))
xlabel ("Time (sec)™)

ylabel ("Frequency (Hz)")

4-17

4 Waveforms, Transmitter, and Receiver

9.4

9.5

WOB6
L
g
d 9.7
=
[y
P
[

9.8

9.9

10

0.5 1 1.5 2 25 3 3.5 4
Time (sec) w103

4-18

Phase-Coded Waveforms

Phase-Coded Waveforms

In this section...

“When to Use Phase-Coded Waveforms” on page 4-19
“How to Create Phase-Coded Waveforms” on page 4-19

“Basic Radar Using Phase-Coded Waveform” on page 4-20

When to Use Phase-Coded Waveforms

Situations in which you might use a phase-coded waveform instead of another type of
waveform include:

* When a rectangular pulse cannot provide both of these characteristics:

Short enough pulse for good range resolution
Enough energy in the signal to detect the reflected echo at the receiver

* When two or more radar systems are close to each other and you want to reduce
interference among them.

* When digital processing suggests using a waveform with a discrete set of phases. For
example, a Barker-coded waveform is a bi-phase waveform.

Conversely, you might use another waveform instead of a phase-coded waveform in the
following situations:

* When you need to detect or track high-speed targets

Phase-coded waveforms tend to perform poorly when signals have Doppler shifts.

* When the hardware requirements for phase-coded waveforms are prohibitively
expensive

How to Create Phase-Coded Waveforms

To create a phase-coded waveform, use phased.PhaseCodedWaveform. You can
customize certain characteristics of the waveform, including:

* Type of phase code
* Number of chips
+ Chip width

4-19

4 Waveforms, Transmitter, and Receiver

4-20

* Sample rate
+ Pulse repetition frequency (PRF)
* Sequence index (Zadoff-Chu code only)

After you create a phased.PhaseCodedWaveform object, you can plot the waveform
using the plot method of this class. You can also generate samples of the waveform
using the step method.

For a full list of properties and methods, see the phased.PhaseCodedWaveform reference
page.

Basic Radar Using Phase-Coded Waveform

In the example in “End-to-End Radar System”, you can use a phase-coded waveform in
place of a rectangular waveform. To do so:

1 Replace the definition of hwav with the following definition.

hwav = phased.PhaseCodedWaveform("Code”, "Frank®, "NumChips”,4, ...
"ChipWidth",le-6, "PRF",5e3, "OutputFormat”, "Pulses”, . ..
“NumPulses”,1);

2 Redefine the pulse width, tau, based on the properties of the new waveform.
tau = hwav.ChipWidth * hwav.NumChips;

For convenience, the complete code appears here. For a detailed explanation of the code,
see the original example, “End-to-End Radar System”.

hwav = phased.PhaseCodedWaveform("Code”, "Frank®, "NumChips®,4, ...
"ChipWidth",le-6, "PRF",5e3, "OutputFormat”, "Pulses”, . ..
"NumPulses®,1);

hant = phased.lsotropicAntennaElement("FrequencyRange”, ...
[1e9 10e9]);

htgt = phased.RadarTarget(“Model ™, "Nonfluctuating”, ...
“MeanRCS*",0.5, "PropagationSpeed” ,physconst("LightSpeed”), . ..
"OperatingFrequency”,4e9);

htxplat = phased.Platform("InitialPosition®,[0;0;0], "Velocity",[0;0;0]):
htgtplat = phased.Platform("InitialPosition®,[7000; 5000; 0],.--
“Velocity”,[-15;-10;01);

Phase-Coded Waveforms

[totrng, tgtang] = rangeangle(htgtplat.InitialPosition, ...
htxplat._InitialPosition);

Pd = 0.9;

Pfa = le-6;

numpulses = 10;

SNR = albersheim(Pd,Pfa,10);

maxrange = 1.5e4;

lambda = physconst("LightSpeed®)/4e9;

tau = hwav.ChipWidth * hwav.NumChips;

Pt = radareqpow(lambda,maxrange,SNR,tau, "RCS",0.5,"Gain",20);

htx = phased.Transmitter("PeakPower~® ,50e3, "Gain”,20, ...
"LossFactor”,0, " InUseOutputPort” ,true, ...
"CoherentOnTransmit®,true);

hrad = phased.Radiator("Sensor”,hant, ...
"PropagationSpeed” ,physconst("LightSpeed®), ...
"OperatingFrequency” ,4e9);

hcol = phased.Collector("Sensor” ,hant, ...
"PropagationSpeed” ,physconst("LightSpeed®), ...
"Wavefront®,"Plane”, "OperatingFrequency” ,4e9);

hrec = phased.ReceiverPreamp(“Gain®,20, "NoiseFigure~®,2, ...
"ReferenceTemperature®,290, "SampleRate” ,1e6, - ..
"EnablelnputPort®,true, "SeedSource”, "Property”,"Seed”,1e3);

hspace = phased.FreeSpace(...
"PropagationSpeed” ,physconst("LightSpeed®), ...
"OperatingFrequency”,4e9, "TwoWayPropagation® ,false, . ..
"SampleRate” ,1e6);

% Time step between pulses

T = 1/hwav.PRF;

% Get antenna position

txpos = htxplat.InitialPosition;

% Allocate array for received echoes

rxsig = zeros(hwav.SampleRate*T,numpulses);

for n = 1:numpulses
% Update the target position
[totpos, tgtvel] = step(htgtplat,T);
% Get the range and angle to the target

4-21

4 Waveforms, Transmitter, and Receiver

4-22

end

rxs
T =
ran
plo

[togtrng, tgtang] = rangeangle(tgtpos,txpos);

% Generate the pulse

sig = step(hwav);

% Transmit the pulse. Output transmitter status
[sig,txstatus] = step(htx,sig);

% Radiate the pulse toward the target

sig = step(hrad,sig,tgtang);

% Propagate the pulse to the target in free space

sig = step(hspace,sig,txpos,tgtpos,[0;0;0],tgtvel);

% Reflect the pulse off the target

sig = step(htgt,sig);

% Propagate the echo to the antenna in free space

sig = step(hspace,sig,tgtpos,txpos,tgtvel,[0;0;0]);

% Collect the echo from the incident angle at the antenna
sig = step(hcol,sig,tgtang);

% Receive the echo at the antenna when not transmitting
rxsig(:,n) = step(hrec,sig,~txstatus);

ig = pulsint(rxsig, "noncoherent®);
unigrid(0,1/hrec.SampleRate,T,"[)");

gegates = (physconst("LightSpeed®)*t)/2;

t(rangegates,rxsig); hold on;

xlabel ("Meters™); ylabel("Power®);

ylim = get(gca, "YLIm");
plot([tgtrng,tgtrng], [0 ylim(2)], r");
u Figurel ‘E”E”E|

File Edit View Inset Tools Desktop Window Help k]

Power

Ddde [RAAOBDEL- 2|08 | D

x10°
1.2

1
0a
0.6

04

0 0.5 1 1.5 2 25 3
Meters

Waveforms with Staggered PRFs

Waveforms with Staggered PRFs

In this section...
“When to Use Staggered PRFs” on page 4-23
“Linear FM Waveform with Staggered PRF” on page 4-23

When to Use Staggered PRFs

Using a nonconstant PRF has important applications in radar. This approach is called
PRF staggering, or PRI staggering.

Uses of staggered PRF's include:

* The removal of Doppler ambiguities, or blind speeds, where Doppler frequencies that
are multiples of the PRF are aliased to zero

+ Mitigation of the effects of jamming

To implement a staggered PRF, configure your waveform object with a vector instead of a
scalar as the PRF property value.

Linear FM Waveform with Staggered PRF

Model a linear FM pulse waveform with two PRFs, 1 and 2 kHz. Use a linear FM pulse
with a sweep bandwidth of 200 kHz and a duration of 100 ps. The sample rate is 1 MHz.
Output 5 pulses.

prfs = [1e3 2e3];

hfm = phased.LinearFMWaveform("PRF",prfs, ...
"SweepBandwidth® ,200e3, . ..
"PulseWidth®,100e-6, "NumPulses®,5);

wf = step(hfm);

T = length(wf)*(1/hfm._SampleRate);

t = unigrid(0,1/hfm_SampleRate,T,"[)");

plot(t.*1000, real (wf))

set(gca, "xtick",[0 1 1.5 2.5 3]);

xlabel("milliseconds®);

4-23

4 Waveforms, Transmitter, and Receiver

B Figure1 =N e =

File Edit View Inset Tools Desktop Window Help L

D He | M AROBDEL- (2 |0EH am

05 4

4 A i | .
0 1 15 25 3

milliseconds

4-24

Plot Spectrogram Using Radar Waveform Analyzer App

Plot Spectrogram Using Radar Waveform Analyzer App

The radarWaveformAnalyzer is a Matlab™ App that lets you explore important
properties of a signal such as its waveform, spectrum, and ambiguity function.

Open radarWaveformAnalyzer App

When you type radarWaveformAnalyzer from the command line or select the app
from the App Toolstrip, an interactive window opens. The default window shows
a rectangular waveform. You can then select various options to analyze different
waveforms.

radarWaveformAnalyzer

4-25

4 Waveforms, Transmitter, and Receiver

4| Radar Waveform Analyzer

File Help
@ v &Y
T ¥ Waveform Settings

Wiaveform: | Rectangular

Apply

T ¥ Visualization Settings

Wiewy: | Real and Imaginary

Sample Rate: 3e+06 Hz
PRF 10000 Hz =
' =)
Mumber of Pulzes: |2 g 0.6
Pulse Yidth: |5e-05 H =
Propagation Speed: 3e+08 mis -:%- 08

o
ra

Waveform: Real Part
T

1] 60 80 100 120 140
¥ ¥ Waveform Characteristics - dimei(lis)
-
R Resolution: 7.5 ki o n
EME RS F I : Waveform: Imaginary Part
Doppler Resolution: 5 kHz T T T T T
Minimum Range: 7.5 km 1
Maiximum Range: 15 km
Maximum Doppler: 5 kHz = 08
Time Bandwicth Product: 4e+08 é" 06t
Dty Cycle: 50 % 3
S04
=
<t
021
1]
1 1 1 1 1
1] 60 80 100 120 140

Time (us)

Show the spectrogram of baseband FMCW signal

As an example, use the app to show the spectrogram of a continuous FMCW waveform.

1 Set the Waveform to FMCW
2 Set the Sweep Interval to Symmetric
3 Set the Number of Sweeps to 4

4-26

Plot Spectrogram Using Radar Waveform Analyzer App

4 Set the View to Spectrogram

Then, you will see a plot of the spectrogram of the signal similar to this.

filenm = fullfile(matlabroot, "examples”, "phased”, "radarWaveformAnalyzerAppExample_ 02 _pi
im = imread(Filenm);

figure("Position”,[315 160 906 690])

image(im)

axis off

set(gca, "Position”,[0.078 0.077 0.845 0.896])

r;‘ Rada-Wavsform &nalyzer

R=RA=E
Tile Ilelp u
o RE
F ¥ Wavekonn S=ilings n
Waerorm | -inaar Fi = Spectrogram of Baseband Signal
Zanle Rate: [Ze+)5 Hz
FHF - | 20030 Hz

Humzer of Puleee: [

=

Puze Width: Ee-05 a

Sweep Dandwidsh: 0000 liz

SwucDDi"r..tDn:|IJ » -

LUE-]

I:nwhpe:|R=-l1m_mh| -

l
Sriee tsrval: |P|ui|i\u: v]
l

Prsppaggelinn % et |.=|r:1-1ﬁ

Ak

7 ¥ Visualizefion Sottingz A

d0

Abkads

Frequercy (MHz2]
(=3

'r'i':w:|~1|n:r.n.umu v|

r
7 ¥ Wavclorm Charactzristics a '
Fonge Jesonlion 500 m

Oopper Jesouton 10 kHz

Nrurum Harge 4.5 <m

Lo,

Maxirum FEI'EB [B-K4]
Noximum Dappler 10 kHz

Time Dandwidth Product 2e+10
Moy Cyrle 100 5

60
EL
80
EL
100
-1C
i
3
10 20 30 40 51 60 70 81 ©O

Time jus)

4-27

4 Waveforms, Transmitter, and Receiver

Transmitter

4-28

In this section...

“Transmitter Object” on page 4-28

“Phase Noise” on page 4-30

Transmitter Object

The phased.Transmitter object enables you to model key components of the radar
equation including the peak transmit power, the transmit gain, and a system loss factor.
You can use phased.Transmitter together with radaregpow, radareqrng, and
radaregsnr, to relate the received echo power to your transmitter specifications.

While the preceding functionality is important in applications dependent on amplitude
such as signal detectability, Doppler processing depends on the phase of the complex
envelope. In order to accurately estimate the radial velocity of moving targets, it is
important that the radar operates in either a fully coherent or pseudo-coherent mode. In
the fully coherent, or coherent on transmit, mode, the phase of the transmitted pulses is
constant. Constant phase provides you with a reference to detect Doppler shifts.

A transmitter that applies a random phase to each pulse creates phase noise that can
obscure Doppler shifts. If the components of the radar do not enable you to maintain
constant phase, you can create a pseudo-coherent, or coherent on receive radar by keeping
a record of the random phase errors introduced by the transmitter. The receiver can
correct for these errors by modulation of the complex envelope. The phased.Transmitter
object enables you to model both coherent on transmit and coherent on receive behavior.

The transmitter object has the following modifiable properties:

+ PeakPower — Peak transmit power in watts
* Gain — Transmit gain in decibels
+ LossFactor — Loss factor in decibels

* InUseOutputPort — Track transmitter's status. Setting this property to true
outputs a vector of 1s and Os indicating when transmitter is on and off. In a
monostatic radar, the transmitter and receiver cannot operate simultaneously.

+ CoherentOnTransmit — Preserve coherence among transmitter pulses. Setting this
property to true (the default) models the operation of a fully coherent transmitter

Transmitter

where the pulse-to-pulse phase is constant. Setting this property to false introduces
random phase noise from pulse to pulse and models the operation of a non-coherent
transmitter.

* PhaseNoiseOutputPort — Output the random pulse phases introduced by
non-coherent operation of the transmitter. This property only applies if the
CoherentOnTransmit property is False. By keeping a record of the random pulse
phases, you can create a pseudo-coherent, or coherent on receive radar.

Construct a transmitter with a peak transmit power of 1000 watts, a transmit gain of 20
decibels (dB), and a loss factor of 0 dB. Set the InUseOutPutPort property to true to
record the transmitter's status.

htx = phased.Transmitter("PeakPower~®,1e3, "Gain",20, ...
"LossFactor”,0, " InUseOutputPort” ,true)

Construct a pulse waveform for transmission. In this example, use a 100-microsecond
linear FM pulse with a bandwidth of 200 kHz. Use the default sweep direction and
sample rate. Set the PRF to 2 kHz.

hpuls = phased.LinearFMWaveform(“PulseWidth®,100e-6, "PRF",2e3, ...
"SweepBandwidth®,2e5, "OutputFormat®, "Pulses®, "NumPulses~®,1);

Obtain the pulse waveform using the step method of the waveform object. Transmit
the waveform using the step method of the transmitter object, hpuls. The output

is one pulse repetition interval because the NumPulses property of the waveform
object is equal to 1. The pulse waveform values are scaled based on the peak transmit
power and the ratio of the transmitter gain to loss factor. The scaling factor is
sqrt(htx.PeakPower*db2pow(htx.Gain-htx.LossFactor)).

wf = step(hpuls);

[txoutput,txstatus] = step(htx,wf);

t = unigrid(0,1/hpuls._SampleRate,1/hpuls_.PRF,"[)");
subplot(211)

plot(t,real (txoutput));

axis tight; grid on; ylabel("Amplitude®);
title("Transmitter Output (real part) - One PRI");
subplot(212)

plot(t,txstatus);

axis([0 t(end) 0 1.5]); xlabel("Seconds”); grid on;
ylabel ("Off-On Status®);

set(gca, "ytick",[0 1]);

title("Transmitter Status”);

4-29

4 Waveforms, Transmitter, and Receiver

4-30

Figure1 felle =

File Edit View Insert Tools Desktop Window Help N

D HS | |ARRODEL- |2 |0EH| 0D

Transmitter Qutput (real part) - One PRI
T T T

o
S
)

o

Amplitude

i)
S
]

Off-On Status
o a
H

=)
[IR -
w
-

Phase Noise

To model a coherent on receive radar, you can set the CoherentOnTransmit property to
false and the PhaseNoiseOutputPort property to true. You can output the random
phase added to each sample with step.

To illustrate this process, the following example uses a rectangular pulse waveform
with five pulses. A random phase is added to each sample of the waveform. Compute the
phase of the output waveform and compare the phase to the phase noise returned by the
step method.

For convenience, set the gain of the transmitter to 0 dB, the peak power to 1 W, and seed
the random number generator to ensure reproducible results.

hrect = phased.RectangularWaveform(“NumPulses®,5);

htx = phased.Transmitter("CoherentOnTransmit”,false,. ..
"PhaseNoiseOutputPort” ,true, "Gain”",0, "PeakPower”,1, . ..
"SeedSource” , "Property”, "Seed”,1000) ;

wf = step(hrect);

[txtoutput,phnoise] = step(htx,wf);

phdeg = radtodeg(phnoise);

phdeg(phdeg>180)= phdeg(phdeg>180)-360;

plot(wf); title("Input Waveform®);

axis([0 length(wf) 0 1.5]); ylabel("Amplitude®);

grid on;

figure;

subplot(2,1,1)

plot(radtodeg(atan2(imag(txtoutput), real (txtoutput))))

Transmitter

title("Phase of the Output®); ylabel("Degrees”);
axis([0 length(wf) -180 180]); grid on;
subplot(2,1,2)

plot(phdeg); title("Phase Noise"); ylabel("Degrees®);
axis([0 length(wf) -180 180]); grid on;

B Figure1 [|| 3]
File Edit View Insert Tools Desktop Window Help e
_hl_jlﬂa.:! h‘ +_x€-rp@"-h._f:' @_,- DE 1wy
Input Waveform
15 : : : :
1 o : o :]
Lkl
=
=
=1
E
I
0&F----F--mmqmm e 5
0
0 100 200 300 400 500

4-31

4 Waveforms, Transmitter, and Receiver

4-32

B Figure 2 = =<
File Edit View Insert Tools Desktop Window Help o
Ndde W ARRAROTDEN- S| 06HE O

Phase of the Output

T ——
1
1
1
1
1
1
1
1
1
1
|

5]
ax
= feoo.
= i
(i :
i q00
Phase Moise
! !
100 f---------- dmemeennae Raent CEETEEFCEES EERCRPEEEE .
7] 1 1
m "
4 k]
hc_,:l p—
[ak] 1 1
(] : | '
00 p------omm- g R Rl R Rt tommmonooe- .
] 100 200 300 400 f00

The first figure shows the waveform. The phase of each pulse at the input to the
transmitter is zero. In the second figure, the top plot shows the phase of the transmitter
output waveform. The bottom plot shows the phase added to each sample. Focus on the
first 100 samples. The pulse waveform is equal to 1 for samples 1-50 and O for samples
51-100. The added random phase is a constant —124.7 degrees for samples 1-100, but
this affects the output only when the pulse waveform is nonzero. In the output waveform,
you see that the output waveform has a phase of —124.7 degrees for samples 1-50 and

Transmitter

0 for 51-100. Examining the transmitter output and phase noise for samples where the
input waveform is nonzero, you see that the phase output of step and the phase of the
transmitter output agree.

4-33

4 Waveforms, Transmitter, and Receiver

Receiver Preamp

4-34

In this section...

“Operation of Receiver Preamp” on page 4-34
“Configuring Receiver Preamp” on page 4-34

“Model Receiver Effects on Sinusoidal Input” on page 4-36

“Model Coherent on Receive Behavior” on page 4-38

Operation of Receiver Preamp

The phased.ReceiverPreamp object lets you model the effects of gain and
component-based noise on the signal-to-noise ratio (SNR) of received signals.
phased.ReceiverPreamp operates on baseband signals. The object is not intended to
model system effects at RF or intermediate frequency (IF) stages.

Configuring Receiver Preamp

The phased.ReceiverPreamp object has the following modifiable properties:

+ EnablelnputPort — A logical property that enables you to specify when the receiver
is on or off. Input the actual status of the receiver as a vector to step. This property
is useful when modeling a monostatic radar system. In a monostatic radar, it is
important to ensure the transmitter and receiver are not operating simultaneously.
See phased.Transmitter and “Transmitter” on page 4-28.

+ Gain— Gain in dB (Ggp)

* LossFactor — Loss factor in dB (Lgp)

* NoiseMethod — Specify noise input as noise power or noise temperature
+ NoiseFigure — Receiver noise figure in dB (F;p)

+ ReferenceTemperature — Receiver reference temperature in kelvin (7)
+ SampleRate — Sample rate (f,)

NoisePower — Noise power specified in Watts (¢)

* NoiseComplexity — Specify noise as real-valued or complex-valued

* EnablelnputPort — Add input to specify when the receiver is active

Receiver Preamp

+ PhaseNoiselnputPort — Add input to specify phase noise for coherent on receive
receiver

+ SeedSource — Lets you specify random number generator seed

+ Seed — Random number generator seed

The output signal, y/n/, of the phased.ReceiverPreamp System object equals the input
signal scaled by the ratio of receiver amplitude gain to amplitude loss plus additive noise

_G o
Mnl= Lx{n]+\/§u{n]

where x/n] is the complex-valued input signal and w/n/ is unit-variance noise complex-
valued noise.

When the input signal is real-valued, the output signal, y/n/, equals the real-valued input
signal scaled by the ratio of receiver amplitude gain to amplitude loss plus real-valued
additive noise

Mnl= %x{n]+ owln]

The amplitude gain, G, and loss, L, can be express in terms of the input dB parameters

by

G = 10%a/20
L= 10LdB/ZO
respectively.

The additive noise for the receiver is modeled as a zero-mean complex white Gaussian

noise vector with variance, 0%, equal to the noise power. The real and imaginary parts of
the noise vector each have variance equal to 1/2 the noise power.

4-35

4 Waveforms, Transmitter, and Receiver

4-36

You can set the noise power directly by choosing the NoiseMethod property to be
"Noise power"® and then setting the NoisePower property to a real positive number.
Alternatively, you can set the noise power using the system temperature by choosing the
NoiseMethod property to be "Noise temperature”. Then

0% =kyBTF

where kp is Boltzmann’s constant, B is the noise bandwidth which is equal to the sample
rate, f;, T is the system temperature, and F'is the noise figure in power units.

The noise figure, F, is a dimensionless quantity that indicates how much a receiver
deviates from an ideal receiver in terms of internal noise. An ideal receiver produces
thermal noise power defined by noise bandwidth and temperature. In terms of power
units, the noise figure F = 10"*'’°, A noise figure of 0 dB indicates that the noise power of
a receiver equals the noise power of an ideal receiver. Because an actual receiver cannot
exhibit a noise power value less than an ideal receiver, the noise figure is always greater
than or equal to one. In decibels, the noise figure must be greater than or equal to zero.

To model the effect of the receiver preamp on the signal, phased.ReceiverPreamp
computes the effective system noise temperature by taking the product of the reference
temperature, T, and the noise figure F in power units. See systemp for details.

Model Receiver Effects on Sinusoidal Input

Specify a phased.ReceiverPreamp System object with a gain of 20 dB, a noise figure of
5 dB, and a reference temperature of 290 degrees kelvin.

hr = phased.ReceiverPreamp(“Gain®,20, ...
"NoiseFigure®,5, "ReferenceTemperature” ,290, . ..
"SampleRate” ,1le6, "SeedSource” , "Property”, "Seed”,1e3);

Assume a 100-Hz sine wave input with an amplitude of 1 microvolt. Because the Phased
Array System Toolbox assumes that all modeling is done at baseband, use a complex
exponential as the input to the phased.ReceiverPreamp.step method.

t = unigrid(0,0.001,0.1,"[)");
X = le-6*exp(1j*2*pi*100*t).";
y = step(hr,x);

The output of the phased.ReceiverPreamp.step method is complex-valued as
expected.

Receiver Preamp

Now show how the same output can be produced from the multiplicative amplitude gain
and additive noise. First assume that the noise bandwidth equals the sample rate of the
receiver preamp (1 MHz). Then, the noise power is equal to:

NoiseBandwidth = hr_SampleRate;
noisepow = physconst(“Boltzmann®)*. ..
systemp(hr_NoiseFigure,hr_ReferenceTemperature)*NoiseBandwidth;

The noise power is the variance of the additive white noise. To determine the correct
amplitude scaling of the input signal, note that the gain is 20 dB. Because the loss
factor in this case is 0 dB, the scaling factor for the input signal is found by solving the

following equation for the multiplicative gain G from the gain in dB, Gus:

G = 10(Can/20)

@
|

= 10~(hr.Gain/20)

10

The gain is 10. By scaling the input signal by a factor of ten and adding complex white
Gaussian noise with the appropriate variance, you produce an output equivalent to the
preceding call to phased.ReceiverPreamp.step (use the same seed for the random
number generation).

rng(1e3);
yl = G*x + sqrt(noisepow/2)*(randn(size(x))+1lj*randn(size(x)));

Compare a few values of y to y1.

disp(y1(1:10) - y(1:10))

o

eNoNoNoNoNeoNoNe

4-37

4 Waveforms, Transmitter, and Receiver

4-38

Model Coherent on Receive Behavior

To model a coherent on receive monostatic radar use the EnablelnputPort and
PhaseNoiselnputPort properties. In a monostatic radar, the transmitter and receiver
cannot operate simultaneously. Therefore, it is important to keep track of when the
transmitter is active so that you can disable the receiver at those times. You can input a
record of when the transmitter is active by setting the EnablelnputPort to true and
providing this record to the step method.

In a coherent on receive radar, the receiver corrects for the phase noise introduced at
the transmitter by using the record of those phase errors. You can input a record of the
transmitter phase errors to step when you set the PhaseNoise lnputPort property to
true.

To illustrate this, construct a rectangular pulse waveform with five pulses. The PRF is
10 kHz and the pulse width is 50 ps. The PRI is exactly two times the pulse width so the
transmitter alternates between active and inactive time intervals of the same duration.
For convenience, set the gains on both the transmitter and receiver to 0 dB and the peak
power on the transmitter to 1 watt.

Use the PhaseNoiseOutputPort and InUseOutputPort properties on the transmitter
to record the phase noise and the status of the transmitter.

Enable the EnablelnputPort and PhaseNoiselnputPort properties on the receiver
preamp to determine when the receiver is active and to correct for the phase noise
introduced at the transmitter.

Delay the output of the transmitter using delayseq to simulate the waveform arriving
at the receiver preamp when the transmitter is inactive and the receiver is active.

hrect = phased.RectangularWaveform(“NumPulses®,5);

htx = phased.Transmitter("CoherentOnTransmit”,false, ...
"PhaseNoiseOutputPort” ,true, "Gain”",0, "PeakPower",1, . ..
"SeedSource”, "Property”, "Seed”,1000, " InUseOutputPort” ,true);

wf = step(hrect);

[txtoutput, txstatus,phnoise] = step(htx,wf);

txtoutput = delayseq(txtoutput,hrect.PulseWidth, ...
hrect.SampleRate);

hrc = phased.ReceiverPreamp(“Gain®,0, ...

Receiver Preamp

"PhaseNoiselnputPort”,true, "EnablelnputPort” ,true);
y = step(hrc,txtoutput,~txstatus,phnoise);

subplot(2,1,1)
plot(real (txtoutput));

title("Delayed Transmitter Output with Phase Noise®);

ylabel ("Amplitude®);
subplot(2,1,2)
plot(real(y));

xlabel ("Samples®); ylabel("Amplitude®);
title("Received Signal with Phase Correction®);

Amplitude

Amplitude

Bl Figure1

File Edit View Inset Tools Desktop Window Help

DEde | hARRARODEL-S|0EH 0O

Delayed Transmitter Output with Phase Noise

"0 100 200 300 400

Received Signal with Phase Correction

500

U U

0 100 200 300 400

Samples

500

oo =

»

4-39

4 Waveforms, Transmitter, and Receiver

Radar Equation

4-40

In this section...

“Radar Equation Theory” on page 4-40
“Link Budget Calculation Using the Radar Equation” on page 4-41

“Maximum Detectable Range for a Monostatic Radar” on page 4-42

“Output SNR at the Receiver in a Bistatic Radar” on page 4-43

Radar Equation Theory

The point target radar range equation estimates the power at the input to the receiver
for a target of a given radar cross section at a specified range. In this equation, the signal
model is assumed to be deterministic. The equation for the power at the input to the
receiver is:

P PG,G)%
r— 3 p2p2
(4n)® RZR?L

where the terms in the equation are:

* P,— Received power in watts.

+ P, — Peak transmit power in watts.

* G;— Transmitter gain.

* G, — Receiver gain.

+ 1 — Radar operating frequency wavelength in meters.

* 0 — Target's nonfluctuating radar cross section in square meters.

* L — General loss factor to account for both system and propagation loss.
* R, — Range from the transmitter to the target.

* R, — Range from the receiver to the target. If the radar is monostatic, the transmitter
and receiver ranges are identical.

The equation for the power at the input to the receiver represents the signal term in the
signal-to-noise (SNR) ratio. To model the noise term, assume the thermal noise in the
receiver has a white noise power spectral density (PSD) given by:

Radar Equation

P(f)=kT

where k is the Boltzmann constant and 7 is the effective noise temperature. The receiver
acts as a filter to shape the white noise PSD. Assume that the magnitude squared
receiver frequency response approximates a rectangular filter with bandwidth equal

to the reciprocal of the pulse duration, I/7. The total noise power at the output of the
receiver is:

where F,, is the receiver noise figure.

The product of the effective noise temperature and the receiver noise factor is referred to
as the system temperature and is denoted by T, so that T, = TF,, .

Using the equation for the received signal power and the output noise power, the receiver
output SNR is:

P, P1G,GA%

r
N (4rn)3kT,R?R2L

Solving for the required peak transmit power:

_ P.(4n)*kT,R’R’L

P
" NtG,GA%

The preceding equations are implemented in the Phased Array System Toolbox by
the functions: radareqpow, radareqrng, and radareqsnr. These functions and
the equations on which they are based are valuable tools in radar system design and
analysis.

Link Budget Calculation Using the Radar Equation
This example shows how to compute the required peak transmit power using the radar

equation. You implement a noncoherent detector with a monostatic radar operating at
5 GHz. Based on the noncoherent integration of ten one-microsecond pulses, you want

4-41

4 Waveforms, Transmitter, and Receiver

4-42

to achieve a detection probability of 0.9 with a maximum false-alarm probability of 10~

6 for a target with a nonfluctuating radar cross section (RCS) of 1 m? at 30 km. The
transmitter gain is 30 dB. Determine the required SNR at the receiver and use the radar
equation to calculate the required peak transmit power.

Use Albersheim's equation to determine the required SNR for the specified detection and
false-alarm probabilities.

Pd = 0.9;

Pfa = le-6;

NumPulses = 10;

SNR = albersheim(Pd,Pfa,10)

The required SNR is approximately 5 dB. Use the function radaregpow to determine the
required peak transmit power in watts.

tgtrng 30e3; % target range in meters

lambda = 3e8/5e9; % wavelength of the operating frequency

RCS = 1; % target RCS

pulsedur = 1le-6; %pulse duration

G = 30; % transmitter and receiver gain (monostatic radar)

Pt = radareqpow(lambda,tgtrng,SNR,pulsedur, "rcs”,RCS, "gain”,G)

The required peak power is approximately 5.6 kW.

Maximum Detectable Range for a Monostatic Radar

Assume that the minimum detectable SNR at the receiver of a monostatic radar
operating at 1 GHz is 13 dB. Use the radar equation to determine the maximum

detectable range for a target with a nonfluctuating RCS of 0.5 m? if the radar has a peak
transmit power of 1 MW. Assume the transmitter gain is 40 dB and the radar transmits
a pulse that is 0.5 ps in duration.

tau = 0.5e-6; % pulse duration

G = 40; % transmitter and receiver gain (monostatic radar)
RCS = 0.5; % target RCS

Pt = 1le6; %peak transmit power in watts

lambda = 3e8/1e9;

SNR = 13; % required SNR in dB

maxrng = radareqrng(lambda,SNR,Pt,tau, "rcs",RCS, "gain”,G)

The maximum detectable range is approximately 345 km.

Radar Equation

Output SNR at the Receiver in a Bistatic Radar

Estimate the output SNR for a target with an RCS of 1 m®. The radar is bistatic. The
target is located 50 km from the transmitter and 75 km from the receiver. The radar
operating frequency is 10 GHz. The transmitter has a peak transmit power of 1 MW with
a gain of 40 dB. The pulse width is 1 ps. The receiver gain is 20 dB.

lambda = physconst("LightSpeed®)/10e9;

tau = le-6;

Pt = 1e6;

TxXRVRng =[50e3 75e3];

Gain = [40 20];

snr = radaregsnr(lambda, TxRvRng,Pt,tau, "Gain®,Gain);

The estimated SNR is approximately 9 dB.

4-43

4 Waveforms, Transmitter, and Receiver

Display Vertical Coverage Diagram

30

20

Height (km)
M2

0.01

4-44

Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed

20 meters above the ground. Set the free-space range to 100 km. Use default plotting
parameters.

freq = 100e6;

ant_height = 20;

rng_fs = 100;

[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);
blakechart(vcp, vcpangles);

90 80 Elake Chart

70
60

a0

40

30

20

10

0
0.1 6 10 30 50 70 90 150 200
Range (km)

Compute Peak Power Using Radar Equation Calculator App

Compute Peak Power Using Radar Equation Calculator App

The radarEquationCalculator is a Matlab™ App that lets you determine key radar
characteristics such as detection range, required peak transmit power, and SNR. The
App works for monostatic and bistatic radars.

Open radarEquationCalculator App

When you type radarEquationCalculator from the command line or select the app
from the App Toolstrip, an interactive window opens. The default window shows a
calculation of target range from SNR, power, and other parameters. You can then select
various options to compute different radar parameters.

radarEquationCalculator

4-45

4 Waveforms, Transmitter, and Receiver

4| Radar Equation Calculatar o || B || ER
File Help
Calculation Type: Target Range -
Radar Specifications
Wavelength: 0.3 m -
Fulse Width: 1 ps -
System Losses: 0 dB
Maige Termperature: 290 7
Target Radar Cross Section: 1 e -
Configuration: Monostatic -
Gain: 20 dB
Peak Transmit Power: 1 KW -

SME | s 10 dB

Target Range: 10.32 k-

Compute Required Peak Transmit Power of Monostatic Radar

As an example, use the app to compute the required peak transmit power for a
monostatic radar to detect a large target at 100 km. The radar operates at 10 GHz with

4-46

Compute Peak Power Using Radar Equation Calculator App

a 40 dB antenna gain. Set the probability of detection to 0.9 and the probability of false
alarm to 0.0001.

From the Calculation Type drop-down list, choose Peak Transmit Power

Set the Wavelength to 3 cm

Specify the Pulse Width as 2 microseconds

Assume total System Losses of 5 dB

O A ODN -

Assuming the target is a large airplane, set Target Radar Cross Section value to
100 m2

6 Choose Configuration as Monostatic

7 Set the Gain to be 40 dB

8 Open the SNR box

9 Specify the Probability of Detections as 0.9

10 Specify the Probability of False Alarm as 0.0001

Close the App window. Normally, you close the App using the close button.

hg = findall(0, "Name", "Radar Equation Calculator®);
close(hg)

You can see from this previously prepared screen shot that the required peak transmit
power 1s .2095 W.

filenm = fullfile(matlabroot, "examples”, "phased”, "radarEquationExample_03.png");
im = imread(Ffilenm);

figure("Position”,[344 206 849 644])

image(im)

axis off

set(gca, "Position”,[0.083 0.083 0.834 0.888])

4-47

4 Waveforms, Transmitter, and Receiver

[Radar Equation Cakulzter [=

lile llela

Cacalation Type. Peak Tiasml Powsr =

Radar Spocifeations :
iavelerg:h: - cm =

1'u z2 Width: Z U3 -
Svstem Losses: 1 cB

ko g2 Temperature: 297 K

Tergel Radar Cross Seclion, 100 e -]
Coanfgaratian Tdorostatiz -]
Gain: £0 cB

Torget Range: 0 km ':

SHR | o« 11.7627 d3

Dialecion Jpeclicelions o 3HI
Fruleblily of Delection. 04

I'robel ity of Felze Alerm: 0.0201
humbe o’ Pulses.

swerhng Cssz Mambar 0 =

Paak Tranzmit Fouwar: 0.0002C95 [T

4-48

Beamforming

* “Conventional Beamforming” on page 5-2

+ “Adaptive Beamforming” on page 5-7

+ “Wideband Beamforming” on page 5-11

* “Time-Delay Beamforming of Microphone ULA Array” on page 5-18

+ “Visualization of Wideband Beamformer Performance” on page 5-20

5 Beamforming

Conventional Beamforming

5-2

In this section...

“Uses for Beamformers” on page 5-2

“Support for Conventional Beamforming” on page 5-2

“Narrowband Phase Shift Beamformer with a ULA” on page 5-2

Uses for Beamformers

You can use a beamformer to spatially filter the arriving signals. Accentuating or
attenuating signals that arrive from specific directions helps you distinguish between
signals of interest and interfering signals from other directions.

Support for Conventional Beamforming

You can implement a narrowband phase shift beamformer using
phased.PhaseShiftBeamformer. When you use this object, you must specify these aspects
of the situation you are simulating:

+ Sensor array

* Signal propagation speed

* System operating frequency

* Beamforming direction

For wideband beamformers, see “Wideband Beamforming” on page 5-11.

Narrowband Phase Shift Beamformer with a ULA

Construct a ULA with 10 elements. Assume the carrier frequency is 1 GHz and set the
array element spacing to be one-half the carrier frequency wavelength.

fc = 1e9;
lambda = physconst("LightSpeed®)/fc;
hula = phased.ULA("NumElements®,10, "ElementSpacing”, lambda/2);

The ULA sensors are isotropic antenna elements (see phased.IsotropicAntennaElement).
Set the frequency range of the antenna elements to position the carrier frequency in the
middle of the operating range.

Conventional Beamforming

hula_Element.FrequencyRange = [8e8 1.2e9];

Simulate a test signal. For this example, use a simple rectangular pulse.

t = linspace(0,0.3,300)";
testsig = zeros(size(t));
testsig(201:205)= 1;

Assume the rectangular pulse is incident on the ULA from an angle of 30 degrees
azimuth and 0 degrees elevation. Use the collectPlaneWave method of the ULA object to
simulate reception of the pulse waveform from the specified angle.

angle_of_arrival = [30;0];
x = collectPlaneWave(hula,testsig,angle_of _arrival,fc);

X is a matrix with ten columns. Each column represents the received signal at one of the
array elements.

Corrupt the columns of X with complex-valued Gaussian noise. Reset the default random
number stream for reproducible results. Plot the magnitudes of the received pulses at the
first four elements of the ULA.

rng default

npower = 0.5;

X = X + sgrt(npower/2)*(randn(size(x))+li*randn(size(x)));
subplot(221)

plot(t,abs(x(:,1))); title("Element 1 (magnitude)®);
axis tight; ylabel("Magnitude®);

subplot(222)

plot(t,abs(x(:,2))); title("Element 2 (magnitude)®);
axis tight; ylabel("Magnitude®);

subplot(223)

plot(t,abs(x(:,3))); title("Element 3 (magnitude)®);
axis tight; xlabel("Seconds®); ylabel("Magnitude®);
subplot(224)

plot(t,abs(x(:,4))); title("Element 4 (magnitude)®);
axis tight; xlabel("Seconds®); ylabel("Magnitude®);

5-3

5 Beamforming

ot =

File Edit View Inset Tools Desktop Window Help u
DEds AU EL- 8|08 | a0

Element 1 (magnitude) Element 2 (magnitude)

15 15

1 1

Magnitude
Magnitude

05 05

0 0.1 02 03 0 0.1 02 0.3
Element 3 (magnitude) Element 4 (magnitude)

2 15
15
1
0.5

1

IMagnitude
Magnitude

05

0 01 02 03 0 01 02 03
Seconds Seconds

Construct your phase-shift beamformer. Set the WeightsOutputPort property to true
to output the spatial filter weights.

hbf = phased.PhaseShiftBeamformer("“SensorArray”,hula, ...
"OperatingFrequency”,1e9, "Direction” ,angle_of _arrival, ...
"WeightsOutputPort”,true);

Apply the step method for the phase shift beamformer. The step method computes and
applies the correct weights for the specified angle. The phase-shifted outputs from the
ten array elements are then summed.

[y.w] = step(hbf,x);

Plot the magnitude of the output waveform along with the original waveform for
comparison.

figure;

subplot(211)

plot(t,abs(testsig)); axis tight;
title("Original Signal®™); ylabel("Magnitude®);
subplot(212)

plot(t,abs(y)); axis tight;

title("Received Signal with Beamforming®);
ylabel ("Magnitude®); xlabel("Seconds®);

Conventional Beamforming

BFoue =
File Edit View Inset Tools Desktop Window Help k)
DEHs KA OUBDEL- (3 08 a1
Original Signal
1
@
]
=
= 05
=
o
=
0

0.05 01 0.15 0.2 0.25 03

o

Received Signal with Beamforming

o
= M

Magnitude
89900
N> o

0.05 01 015 0.2 025 03
Seconds

=}

To examine the effect of the beamforming weights on the array response, plot the array
normalized power response both with—and without—the beamforming weights.

azang = -180:30:180;

figure;

subplot(211)

plotResponse(hula, fc,physconst("LightSpeed™));

set(gca, "xtick" ,azang);

title("Array Response without Beamforming Weights®);
subplot(212)

plotResponse(hula, fc,physconst("LightSpeed”), "weights”,w);
set(gca, "xtick" ,azang);

title("Array Response with Beamforming Weights®);

u Figure 3 E@

File Edit View Inset Tools Desktop Window Help Ll
NEEe kRO DEL- |2 0E =D

Array Response without Beamforming Weights
0

1)) S

-100

Nermalized Power (dB)

-180-150-120-90 60 -30 0 30 60 90 120 150 180
Azimuth Angle (degrees)
Array Response with Beamforming Weights

Neormalized Power (dB)
8

-180-150-120-90 60 -30 0 30 60 90 120 150 180
Azimuth Angle (degrees)

5 Beomforming

Related Examples

. “Conventional and Adaptive Beamformers”

5-6

Adaptive Beamforming

Adaptive Beamforming

In this section...

“Benefits of Adaptive Beamforming” on page 5-7
“Support for Adaptive Beamforming” on page 5-7
“LCMV Beamformer” on page 5-7

Benefits of Adaptive Beamforming

“Narrowband Phase Shift Beamformer with a ULA” on page 5-2 uses weights chosen
independent of any data received by the array. The weights in the narrowband phase
shift beamformer steer the array response in a specified direction. However, they do not
account for any interference scenarios. As a result, these conventional beamformers are
susceptible to interference signals. Such interference signals can be a particular problem
if they occur at sidelobes of the array response.

By contrast, adaptive, or statistically optimum, beamformers can account for interference
signals. An adaptive beamformer algorithm chooses the weights based on the statistics of
the received data. For example, an adaptive beamformer can improve the SNR by using
the received data to place nulls in the array response. These nulls are placed at angles
corresponding to the interference signals.

Support for Adaptive Beamforming
Phased Array System Toolbox software provides these adaptive beamformers:

* Linearly constrained minimum variance (LCMV) beamformers
* Minimum variance distortionless response (MVDR) beamformers

* Frost beamformers

LCMV Beamformer

This example uses code from the “Narrowband Phase Shift Beamformer with a ULA” on
page 5-2 example. Execute the code from that example before you run this example.

Use phased.BarrageJammer as the interference source. Specify the barrage jammer
to have an effective radiated power of 10 W. The interference signal from the barrage

5-7

5 Beamforming

jammer is incident on the ULA at an angle of 120 degrees azimuth and 0 degrees
elevation.

hjammer = phased.BarrageJammer("ERP",10, "SamplesPerFrame®,300);
jJamsig = step(hjammer);

jJammer_angle = [120;0];

jamsig = collectPlaneWave(hula, jamsig, jammer_angle,fc);

Add some low-level complex white Gaussian noise to simulate noise contributions not
directly associated with the jamming signal. Seed the random number generator for
reproducible results.

noisePwr = 0.00001; % noise power, 50dB SNR

rng(2008) ;

noise = sqrt(noisePwr/2)*._._.
(randn(size(Jamsig))+1lj*randn(size(Jamsig)));

jJamsig = jamsig+noise;

rxsig = x+jamsig;

[yout,w] = step(hbf,rxsig);

Implement the LCMV beamformer. Use the target-free data,jamsig, as training data.
Output the beamformer weights.

hstv = phased.SteeringVector("SensorArray”,hula,...
"PropagationSpeed”,physconst("LightSpeed”));

hLCMV = phased.LCMVBeamformer("DesiredResponse”,1, ...
"TraininglnputPort”,true, "WeightsOutputPort®,true);

hLCMV.Constraint = step(hstv,fc,angle_of arrival);

hLCMV .DesiredResponse = 1;

[yLCMV,wLCMV] = step(hLCMV,rxsig,jamsig);

subplot(211)

plot(t,abs(yout)); axis tight;

title("Conventional Beamformer®);

ylabel ("Magnitude®™);

subplot(212);

plot(t,abs(yLCMV)); axis tight;

title("LCMV (Adaptive) Beamformer®);

xlabel ("Seconds™); ylabel("Magnitude®);

Adaptive Beamforming

B Figure 1 (@] =]
File Edit View Insert Tools Desktap Window Help ~

DEHs ARG OUBDEL- (3 08 D

Convertional Beamformer

Magnituds
o o o
22 @ —

o
X

L L L L L
0os 01 0as 02 025 03

o

LCMY (Adaptive) Beamformer

o
@

Magnituds
o o
= @

o
i

o

L L L
0.0s 04 015 0z 025 03
Seconds

The adaptive beamformer significantly improves the SNR of the rectangular pulse at 0.2
s.

Plot the array normalized power response for the conventional and LCMV beamformers.

figure;

subplot(211)

plotResponse(hula, fc,physconst("LightSpeed”), "weights”,w);
title("Array Response with Conventional Beamforming Weights®);
subplot(212)

plotResponse(hula, fc,physconst("LightSpeed®), "weights” ,wLCMV);
title("Array Response with LCMV Beamforming Weights®);

5 Beamforming

B Figure 1 [=] =]
File Edit VWiew Insert Tools Desktop Window Help E
o o ® &
Odde RO EL- (8 08O
Array Response with Conventional Beamforming Weights
o T T T T T
o
=1
3
&
&
=
T
d
T
E
5
= ' | | | ' |
100 | | | | | |
-200 -130 -100 =50 a 0 100 150 200
Azimith Angle (degress)
Array Response with LMY Beamtorming Weichts
T T T
o
=
3
&
a
b=
@
g
T
E
5
= | ' | | | '
100 I 1 I I I 1 I
-200 -150 -100 -50 a 50 100 150 200
Azimuth Angle (degress)

The LCMV beamforming weights place a null in the array response at the arrival angle
of the interference signal.

See Also
phased.FrostBeamformer | phased. LCMVBeamformer | phased. MVDRBeamformer

Related Examples

. “Conventional and Adaptive Beamformers”

5-10

Wideband Beomforming

Wideband Beamforming

In this section...

“Support for Wideband Beamforming” on page 5-11
“Time-Delay Beamforming of Microphone ULA Array” on page 5-11

“Visualization of Wideband Beamformer Performance” on page 5-13

Support for Wideband Beamforming

Beamforming achieved by multiplying the sensor input by a complex exponential with
the appropriate phase shift only applies for narrowband signals. In the case of wideband,
or broadband, signals, the steering vector is not a function of a single frequency.
Wideband processing is commonly used in microphone and acoustic applications.

Phased Array System Toolbox software provides conventional and adaptive wideband
beamformers. They include:

* phased.FrostBeamformer

* phased.SubbandPhaseShiftBeamformer
* phased.TimeDelayBeamformer

+ phased.TimeDelayLCMVBeamformer

See “Acoustic Beamforming Using a Microphone Array” for an example of using
wideband beamforming to extract speech signals in noise.

Time-Delay Beamforming of Microphone ULA Array

This example shows how to perform wideband conventional time-delay beamforming
with a microphone array of omnidirectional elements. Create an acoustic (pressure wave)
chirp signal. The chirp signal has a bandwidth of 1 kHz and propagates at a speed of 340
m/s at ground level.

340;
linspace(0,1,5e4)";
= chirp(t,0,1,1000);

O 0
Q Il

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone
elements spaced less than one-half the wavelength at the 50 kHz sampling frequency.

5-11

5 Beamforming

The chirp is incident on the ULA with an angle of 45 degrees azimuth and 0 degrees
elevation. Add random noise to the signal.

sMic = phased.OmnidirectionalMicrophoneElement(. ..
"FrequencyRange”,[20 20e3]);

SULA = phased.ULA("Element” ,sMic, "NumElements*,10,. ..
"ElementSpacing”,0.01);

sColl = phased._WidebandCollector("Sensor”,sULA, "SampleRate”,5e4, ...
"PropagationSpeed”,c, "ModulatedInput® ,false);

sigang = [60;0];

rsig = step(sColl,sig,sigang);

rsig = rsig + O.1*randn(size(rsig));

Apply a wideband conventional time-delay beamformer to improve the SNR of the
received signal.

STDF = phased.TimeDelayBeamformer("SensorArray”,sULA, . ..
"SampleRate” ,5e4, "PropagationSpeed” ,c, "Direction” ,sigang);
y = step(sTDF,rsig);

subplot(2,1,1)

plot(t(1:5e3),real(rsig(1:5e3,5)))

title("Signal (real part) at the 5th element of the ULA")
subplot(2,1,2)

plot(t(1:5e3),real(y(1:5e3)))

title("Signal (real part) with time-delay beamforming®)
xlabel ("Seconds™)

5-12

Wideband Beamforming

Signal (real part) at the 5th element of the ULA

—DE i i i i i i i i i
0 001 002 003 004 005 008 007 008 003 01

Signal (real part) with time-delay beamforming
DE T T T T T T T T T

—DE i i i i i i i i i
0 000 o002 003 004 005 006 007 008 009 041

Seconds

Visualization of Wideband Beamformer Performance

This example shows how to plot the response of an acoustic microphone element and an
array of these elements to validate the performance of a beamformer. The array must
maintain an acceptable array pattern throughout the bandwidth.

Create a uniform linear array (ULA) of cosine antenna elements. The
phased.CosineAntennaElement System object™ is general enough to be used as
a microphone element as well because it creates or receives a scalar field. You need
to change the response frequencies to the audible range. In addition make sure the

PropagationSpeed parameter in the array pattern methods are set to the speed of
sound.

5-13

5 Bequorming

c = 340;
freq = [1000 2750];
fc = 2000;

numels = 11;

sCosMic = phased.CosineAntennaElement("FrequencyRange”® ,freq);
SULA = phased.ULA("NumElements®,numels, - ..
"ElementSpacing®,0.5*c/fc, "Element” ,sCosMic);

Plot the response pattern of the microphone element over a set of frequencies.

plotFreq = linspace(min(freq),max(freq),15);
pattern(sCosMic,plotFreq,[-180:180],0, "CoordinateSystem®, "rectangullar®, ...
"PlotStyle”, "waterfall®, "Type", "powerdb™)

Azimuth Cut (elevation angle = 0.0)

— D-H'
o

=

= 20
:

£ 40 '”\\
5

N 60
£

S 80
Z

100

-50

Frequency (kHz) 1 100
Azimuth Angle (degrees)

This plot shows that the element pattern is constant over the entire bandwidth.

5-14

Wideband Beamforming

Mormalized Power (dB)

Plot the response pattern of an 11-element array over the same set of frequencies.

pattern(sULA,plotFreq,[-180:180],0, "CoordinateSystem®, "rectangular”, . ..
"PlotStyle”, "waterfall”, "Type", "powerdb”, "PropagationSpeed”,c)

Azimuth Cut (elevation angle = 0.0)

0 -
-20 ! ; d
40 (AL -

/ IJ'[!I] f i
[/// AL A
50 /) \
_ng' | ’

: (H‘IDD
2
15 50

Frequency (kHz) 1 -100

Azimuth Angle (degrees)

This plot shows that the element pattern mainlobe decreases with frequency.

Apply a subband phase shift beamformer to the array. The direction of interest is 30°
azimuth and 0° elevation. There are 8 subbands.

direction = [30;0];

numbands = 8;

sPSB = phased.SubbandPhaseShiftBeamformer("SensorArray®,sULA, ...
“Direction”,direction, ...

5-15

5 Beamforming

"OperatingFrequency”®,fc, "PropagationSpeed”,c, - - .
"SampleRate” ,1le3, ...
"WeightsOutputPort”®,true, "SubbandsOutputPort” ,true, . ..
“NumSubbands*® , numbands) ;

rx = ones(humbands,numels);

[y.,w,centerfreqs] = step(sPSB,rx);

Plot the response pattern of the array using the weights and center frequencies from the
beamformer.

pattern(sULA,centerfreqgs.”,[-180:180],0, "Weights® ,w, "CoordinateSystem”, "rectangular”®, .
"PlotStyle”, "waterfall”, "Type", "powerdb”, "PropagationSpeed”,c)

Azimuth Cut (elevation angle = 0.0)

=
!

=20

=40 -

Mormalized Power (dB)

Frequency (kHz) 1.5 100
Azimuth Angle (degrees)

The above plot shows the beamformed pattern at the center frequency of each subband.

5-16

Wideband Beamforming

Normalized Power {dB)

Plot the response pattern at three frequencies in two-dimensions.

centerfregs = fftshift(centerfreqgs);

w = Fftshift(w,2);

idx = [1,5,8];

pattern(sULA,centerfreqs(idx).",[-180:180],0, "Weights®",w(:, idx), "CoordinateSystem”, "rec
"PlotStyle”,"overlay”, "Type", "powerdb”, "PropagationSpeed”,c)

legend("Location®, "South™)

Azimuth Cut (elevation angle = 0.0)

10 : :
0F / .
10 N -
vl
=201 o /\ ..'{'.l.' '|ﬂ| .
l.rf'\\.ll I. II | |I | .J
I AN |
_3 D _.": / ?\I’ I|I |I I| |n| |I | | |||| | |
| ‘
40 f / 'l,' (i |‘ -
l,f'-.."-,l I' V “ F i
50 b / \ ' g
60 ,"/\]
i
70t ; -
|
80T ——— 1.500 kHz 1
ool ——— 2,000 kHz |
- 2.375 kHz
_1 DD i 1 1 1 1 i 1 1

-00 80 60 40 20 0 20 40 60 80 100
Azimuth Angle (degrees)

This plot shows that the main beam direction remains constant while the beamwidth
decreases with frequency.

5-17

5 Beamforming

Time-Delay Beamforming of Microphone ULA Array

5-18

This example shows how to perform wideband conventional time-delay beamforming
with a microphone array of omnidirectional elements. Create an acoustic (pressure wave)
chirp signal. The chirp signal has a bandwidth of 1 kHz and propagates at a speed of 340
m/s at ground level.

c = 340;

t = linspace(0,1,5e4)";

sig = chirp(t,0,1,1000);

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional microphone
elements spaced less than one-half the wavelength at the 50 kHz sampling frequency.
The chirp is incident on the ULA with an angle of 45 degrees azimuth and 0 degrees
elevation. Add random noise to the signal.

sMic = phased.OmnidirectionalMicrophoneElement(. ..
"FrequencyRange”,[20 20e3]);

sULA = phased.ULA("Element”,sMic, "NumElements®,10, ...
"ElementSpacing”,0.01);

sColl = phased.WidebandCollector("Sensor”,sULA, "SampleRate”,5e4, . ..
"PropagationSpeed”,c, "ModulatedInput® ,false);

sigang = [60;0];

rsig = step(sColl,sig,sigang);

rsig = rsig + O.1*randn(size(rsig));

Apply a wideband conventional time-delay beamformer to improve the SNR of the
received signal.

sSTDF = phased.TimeDelayBeamformer("SensorArray”,sULA, . ..
"SampleRate” ,5e4, "PropagationSpeed”,c, "Direction” ,sigang);
y = step(sTDF,rsig);

subplot(2,1,1)

plot(t(1:5e3),real(rsig(1:5e3,5)))

title("Signal (real part) at the 5th element of the ULA")
subplot(2,1,2)

plot(t(1:5e3),real(y(1:5e3)))

title("Signal (real part) with time-delay beamforming®)
xlabel ("Seconds™)

Time-Delay Beamforming of Microphone ULA Array

Signal (real part) at the 5th element of the ULA

0.5

—D_E i i i i i i i i i
0 01 002 003 004 005 006 007 008 009 01

Signal (real part) with time-delay beamforming

0.5

—ﬂ_ﬁ i i i i i i i i i
1] 001 002 003 004 005 006 007 008 002 04

Seconds

5-19

5 Beamforming

Visualization of Wideband Beamformer Performance

5-20

This example shows how to plot the response of an acoustic microphone element and an
array of these elements to validate the performance of a beamformer. The array must
maintain an acceptable array pattern throughout the bandwidth.

Create a uniform linear array (ULA) of cosine antenna elements. The
phased.CosineAntennaElement System object™ is general enough to be used as

a microphone element as well because it creates or receives a scalar field. You need

to change the response frequencies to the audible range. In addition make sure the
PropagationSpeed parameter in the array pattern methods are set to the speed of
sound.

c = 340;
freq = [1000 2750];
fc = 2000;

numels = 11;

sCosMic = phased.CosineAntennaElement("FrequencyRange”®,freq);

sULA = phased.ULA("NumElements”® ,numels, ...
"ElementSpacing”,0.5*c/fc, "Element”,sCosMic);

Plot the response pattern of the microphone element over a set of frequencies.

plotFreq = linspace(min(freq),max(freq),15);
pattern(sCosMic,plotFreq,[-180:180],0, "CoordinateSystem®, "rectangullar®, ...
"PlotStyle”, "waterfall”, "Type", "powerdb™)

Visualization of Wideband Beamformer Performance

Mormalized Power (dB)

Azimuth Cut (elevation angle = 0.0)

100

1.5
Frequency (kHz) 1 <100
Azimuth Angle (degrees)

-50

This plot shows that the element pattern is constant over the entire bandwidth.

Plot the response pattern of an 11-element array over the same set of frequencies.

pattern(sULA,plotFreq,[-180:180],0, "CoordinateSystem”, "rectangular”, . ..
"PlotStyle”, "waterfall”, "Type", "powerdb”, "PropagationSpeed”,c)

5-21

5 Beamforming

Mormalized Power (dB)

5-22

Azimuth Cut (elevation angle = 0.0)

0 -
-20 ! ; d
40 4 (1AL |
/ IJ'[f:] f i
o [/// ? ¥ VNG ‘}'Ti\
-80 - / [/// | -Li \
-mg, | ’
: (i 100
2
1.5 50
Frequency (kHz) 1 100

Azimuth Angle (degrees)

This plot shows that the element pattern mainlobe decreases with frequency.

Apply a subband phase shift beamformer to the array. The direction of interest is 30°
azimuth and 0° elevation. There are 8 subbands.

direction = [30;0];

numbands = 8;

sPSB = phased.SubbandPhaseShiftBeamformer("SensorArray”,sULA, ...
“Direction”,direction, ...
"OperatingFrequency”®,fc, "PropagationSpeed”,c, - - .
"SampleRate” ,1le3, ...
"WeightsOutputPort”®,true, "SubbandsOutputPort”® ,true, . ..
“NumSubbands*® , numbands) ;

rx = ones(humbands,numels);

Visualization of Wideband Beamformer Performance

Mormalized Power (dB)

[y.,w,centerfreqs] = step(sPSB,rx);

Plot the response pattern of the array using the weights and center frequencies from the
beamformer.

pattern(sULA,centerfreqgs.”,[-180:180],0, "Weights” ,w, "CoordinateSystem”, "rectangular”®, .
"PlotStyle”, "waterfall”, "Type", "powerdb”, "PropagationSpeed”,c)

Azimuth Cut (elevation angle = 0.0)

=]
!

=20

=40 -

Frequency (kHz) 1.5 -100

Azimuth Angle (degrees)

The above plot shows the beamformed pattern at the center frequency of each subband.

Plot the response pattern at three frequencies in two-dimensions.

centerfregs = fftshift(centerfreqgs);
w = Fftshift(w,2);

5-23

5 Beamforming

idx = [1,5,8];

pattern(sULA,centerfreqs(idx).",[-180:180],0, "Weights",w(:, idx), "CoordinateSystem”, "re
"PlotStyle®,"overlay”, "Type", "powerdb®, "PropagationSpeed”,c)

legend("Location”, "South®)

Azimuth Cut (elevation angle = 0.0)

10 T T T T T T T
0t / :
10t - 1
.'(-,_\'u |'{ 4 -?;:; - II
bl ant ..-’f/-/‘ ?’ I|I I 'II |‘||' | II| || i
o -or 1 'r'l | |II -.i .
g=! LAY
& 0 f/\ﬁlll | ‘ 1
ﬁ I|
£ s0F | :
5 if
< 0t | -
80T —1.500 kHz 1
i ———2.000 kHz |
40 2.375 kHz
_1 DD [1 1 1 1 [1 1

00 80 60 40 -20 0 20 40 60 80 100
Azimuth Angle (degrees)

This plot shows that the main beam direction remains constant while the beamwidth
decreases with frequency.

5-24

Direction-of-Arrival (DOA) Estimation

+ “Beamscan Direction-of-Arrival Estimation” on page 6-2
+ “Super-Resolution DOA Estimation” on page 6-4
+ “Target Tracking Using Sum-Difference Monopulse Radar” on page 6-8

6 Direction-of-Arrival (DOA) Estimation

Beamscan Direction-of-Arrival Estimation

6-2

This example shows how to use the nonparametric beamscan technique to estimate the
direction of arrival (DOA) of signals. The beamscan algorithm estimates the DOAs by
scanning the array beam over a region of interest. The algorithm computes the output
power for each beamscan angle and identifies the maxima as the DOA estimates.

Construct a ULA consisting of ten elements. Assume the carrier frequency of the
incoming narrowband sources is 1 GHz.

fc = 1e9;

lambda = physconst("LightSpeed®)/fc;

sULA = phased.ULA("NumElements®,10, "ElementSpacing”, lambda/2);
sULA_Element._FrequencyRange = [8e8 1.2e9];

Assume that there is a wavefield incident on the ULA consisting of two linear FM pulses.
The DOAs of the two sources are 30° azimuth and 60° azimuth. Both sources have
elevation angles of 0°.

SLFM = phased.LinearFMWaveform("SweepBandwidth®,1e5, ...
"PulseWidth*® ,5e-6, "OutputFormat”, "Pulses”, "NumPulses~®,1);

sigl = step(sLFM);
sig2 = sigl;

angl = [30; 0];
ang2 = [60;0];

arraysig = collectPlaneWave(sULA, [sigl sig2],[angl ang2],fc);
rng default
npower = 0.01;
noise = sqrt(npower/2)*._._.
(randn(size(arraysig)) + li*randn(size(arraysig)));
rxsig = arraysig + noise;

Implement a beamscan DOA estimator. Output the DOA estimates, and plot the spatial
spectrum.

sBcan = phased.BeamscanEstimator("SensorArray”,sULA, ...
"OperatingFrequency”,fc, "ScanAngles”,-90:90, . ..
"DOAOutputPort”,true, "NumSignals*®,2);

[y,sigang] = step(sBcan,rxsig);

plotSpectrum(sBcan)

Beamscan Direction-of-Arrival Estimation

Beamscan Spatial Spectrum

G
|

II |I|
|
|

\ | \ I|
@ 0r ﬁlll".l I|II III
ey | |
% o II'. \ f II| |
o I |I || || |I | | /

4 I| II| 1 |'ﬂ| || | \

II| |||| I| III II| M (] I'lfll
_ﬁ -

~
. J/f\

.

[
L]
| |
| I]" | I’]' |||| \ II lI| | || || |||
VAV
10 i i]JI i |I'||| i LI i i i i
-80 -60 =40 =20 1] 20 40

G0
Broadside Angle (degrees)

Related Examples

“Super-Resolution DOA Estimation” on page 6-4

Direction of Arrival Estimation with Beamscan and MVDR

80

6-3

../examples/direction-of-arrival-estimation-with-beamscan-and-mvdr.html

6 Direction-of-Arrival (DOA) Estimation

Super-Resolution DOA Estimation

6-4

This example shows how to estimate angles of arrival from two separate signal sources
when both angles fall within the main lobe of the array response a uniform linear array
(ULA). In this case, a beamscan DOA estimator cannot resolve the two sources. However,
a super-resolution DOA estimator using the root MUSIC algorithm is able to do so.

Plot the array response of the ULA. Zoom in on the main lobe.

fc = 1e9;

lambda = physconst("LightSpeed®)/fc;

sULA = phased.ULA("NumElements®,10, "ElementSpacing”, lambda/2);
sULA_Element._FrequencyRange = [8e8 1.2e9];

plotResponse(sULA, fc,physconst("LightSpeed®))

axis([-25 25 -30 0]):

Super-Resolution DOA Estimation

Azimuth Cut (elevation angle = 0.0)
D T 1 1 1 ‘__.-' 1 '-\._\‘-\ T 1 1 1
/N
; Y
/ N,
B F i '."' .
I"%.
o
= 10 | .
- I 1 -,
& /7N 7\
- -15T N b \ -
/ . .
E |III I| II "'.IIII
[} | II| | | f |I
E 20 F | | | [| | |
[w] f | | | [I|
= | [| | i
|I | | | | I|
| | | [| |I
L | f 4
250 | | || |
| Wi \ | |
| | v \ .
[| I
-3'} | i I I I I i I I I |
-25 =20 -15 =10 -5 1] 5 10 15 20 25

Azimuth Angle (degrees)

Receive two signal sources with DOAs separated by ten degrees.
angl = [30; 0];

ang2 = [40; 0];

Nsnapshots = 1000;

rng default

npower = 0.01;

rxsig = sensorsig(getElementPosition(sULA)/lambda, ...
Nsnapshots, [angl ang2],npower);

Estimate the directions of arrival using the beamscan estimator. Because both DOAs fall
inside the main lobe of the array response, the beamscan DOA estimator cannot resolve
them as separate sources.

6-5

6 Direction-of-Arrival (DOA) Estimation

sBscan

phased.BeamscanEstimator("SensorArray”,sULA, . ..

"OperatingFrequency”,fc, "ScanAngles®,-90:90, . ..
"DOAOutputPort” ,true, "NumSignals*®,2);

[~.sigang]

= step(sBscan,rxsig);
plotSpectrum(sBscan)

Beamscan Spatial Spectrum
20 \\ 1
\
III
15

|
| |
10

Fower (dB)

[
i i llllll b i i i i i
-80 60 -40 -20 0 20 40 60 80
Broadside Angle (degrees)

Use the super-resolution DOA estimator to estimate the two directions. This estimator
offers better resolution than the nonparametric beamscan estimator.
sRootMus = phased.RootMUSICEstimator("SensorArray”,sULA, ...
"OperatingFrequency”,fc, "NumSignalsSource”, "Property”, ...
"NumSignals”,2, "ForwardBackwardAveraging” ,true);
doa_est = step(sRootMus,rxsig)

Super-Resolution DOA Estimation

doa est =

40.0091 30.0048

This estimator correctly identifies the two distinct directions of arrival.

See Also
phased.RootMUSICEstimator

Related Examples

“Beamscan Direction-of-Arrival Estimation” on page 6-2

. High Resolution Direction of Arrival Estimation

6-7

../examples/high-resolution-direction-of-arrival-estimation.html

6 Direction-of-Arrival (DOA) Estimation

Target Tracking Using Sum-Difference Monopulse Radar

6-8

This example shows how to use the phased.SumDifferenceMonopulseTracker
System object™ to track a moving target. The
phased.SumDifferenceMonopulseTracker tracker solves for the direction of a

target from signals arriving on a uniform linear array (ULA). The sum-difference
monopulse algorithm requires a prior estimate of the target direction which is assumed
to be close to the actual direction. In a tracker, the current estimate serves as the prior
information for the next estimate. The target is a narrowband 500 MHz emitter moving
at a constant velocity of 800 kph. For a ULA array, the steering vector depends only upon
the broadside angle. The broadside angle is the angle between the source direction and a
plane normal to the linear array. Any arriving signal is specified by its broadside angle.

Create the target platform and define its motion

Assume the target is located at [0,10000,20000] with respect to the radar in the
radar's local coordinate system. Assume that the target is moving along the y-axis toward
the radar at 800 kph.

x0 = [0,10000,20000].";
v0 = 800;
v0 = v0*1000/3600;

sTgt = phased.Platform(x0,[0,-v0,0]-");

Set up the ULA array

The monopulse tracker uses a ULA array which consists of 8 isotropic antenna elements.
The element spacing is set to one-half the signal wavelength.

fc = 500e6;

c = physconst("LightSpeed”);

lam = c/fc;

slso = phased. IsotropicAntennaElement("FrequencyRange®,[100e6,800e6], - - -
"BackBaffled" ,true);

sULA = phased.ULA("Element”,slso, "NumElements®,8, ...
"ElementSpacing”, lam/2);

Assume a narrowband signal. This kind of signal can be simulated using the
phased.SteeringVector System object.

sSV = phased.SteeringVector("SensorArray”,sULA);

Target Tracking Using Sum-Difference Monopulse Radar

Tracking Loop

Initialize the tracking loop. Create the phased.SumDifferenceMonopulseTracker
System object.

sMP = phased.SumDifferenceMonopulseTracker("SensorArray”,sULA, ...
"PropagationSpeed”,c, ...
"OperatingFrequency”,fc);

At each time step, compute the broadside angle of the target with respect to the array.
Set the step time to 0.5 seconds.

T = 0.5;
Nsteps = 40;
t = [1:Nsteps]*T;

Setup data vectors for storing and displaying results

rng = zeros(1,Nsteps);
broadang_actual = zeros(1,Nsteps);
broadang_est = zeros(1,Nsteps);
angerr = zeros(l,Nsteps);

Step through the tracking loop. First provide an estimate of the initial broadside angle.
In this simulation, the actual broadside angle is known but add an error of five degrees.

[tgtrng, tgtang_actual] = rangeangle(x0,[0,0,0]-");
broadang0 = az2broadside(tgtang_actual (1), tgtang_actual(2));
broadang_prev = broadang0 + 5.0; % add some sort of error

1 compute the actual broadside angle, broadang_actual.

2 compute the signal, signl, from the actual broadside angle, using the
phased.SteeringVector System object.

3 using the phased.SumDifferenceMonopulseTracker tracker, estimate the
broadside angle, broadang_est, from the signal. The broadside angle derived from
a previous step serves as an initial estimate for the current step.

4 compute the difference between the estimated broadside angle, broadang_est,
and actual broadside angle, broadang_actual. This is a measure of how good the
solution is.

for n = 1:Nsteps

X = step(sTgt,t(n));
[rng(n),tgtang_actual] = rangeangle(x,[0,0,0]-");

6-9

6 Direction-of-Arrival (DOA) Estimation

broadang_actual (n) = az2broadside(tgtang_actual (1),tgtang_actual (2));
signl = step(sSV,fc,broadang_actual(n)).";
broadang_est(n) = step(sMP,signl,broadang_prev);
broadang_prev = broadang_est(n);
angerr(n) = broadang_est(n) - broadang_actual(n);
end

Results
Plot the range as a function of time showing the point of closest approach.
plot(t,rng/71000,"-0%)

xlabel ("time (sec)”)
ylabel ("Range (km) ™)

80 T T T T T T T T T

o

60

Range {(km)
S

e ’
FOEeSagn A e
058800 aas nn ! ﬂ-ﬂﬂ{:’f‘{r‘f

20
0 2 4 G 8 10 12 14 16 18 20

time (sec)

6-10

Target Tracking Using Sum-Difference Monopulse Radar

Broadside angle {deg)

Plot the estimated broadside angle as a function of time.

plot(t,broadang_actual,"-0")
xlabel ("time (sec)")
ylabel ("Broadside angle (deg)~)

40 T T T T T T T T T

20 + Sa, .

0 2 4 G 8 10 12 14 16 18 20
time (sec)

A monopulse tracker cannot solve for the direction angle if the angular separation
between samples is too large. The maximum allowable angular separation is
approximately one-half the null-to-null beamwidth of the array. For an 8-element, half-
wavelength-spaced ULA, the half-beamwidth is approximately 14.3 degrees at broadside.
In this simulation, the largest angular difference between samples is

maxangdi ff = max(abs(diff(broadang_est)));
disp(maxangdiff)

6-11

6 Direction-of-Arrival (DOA) Estimation

4.9546

Therefore, the angular separation between samples is less than the half-beamwidth.

Plot the angle error. This is the difference between the estimated angle and the actual
angle. The plot shows a very small error, on the order of microdegrees.

plot(t,angerr,”-0")
xlabel("time (sec)”)
ylabel ("Angle error (deg)~)

-6
3.5 =10 T T T T T T T T T

Angle error (deq)

0 2 4 6 8 10
time (sec)

6-12

7

Space-Time Adaptive Processing
(STAP)

“Angle-Doppler Response” on page 7-2
“Displaced Phase Center Antenna (DPCA) Pulse Canceller” on page 7-8
“Adaptive Displaced Phase Center Antenna Pulse Canceller” on page 7-13

“Sample Matrix Inversion (SMI) Beamformer” on page 7-18

7 Space-Time Adaptive Processing (STAP)

Angle-Doppler Response

7-2

In this section...

“Benefits of Visualizing Angle-Doppler Response” on page 7-2
“Angle-Doppler Response of a Stationary Target at a Stationary Array” on page 7-2

“Angle-Doppler Response of a Stationary Target Return at a Moving Array” on page
7-4

Benefits of Visualizing Angle-Doppler Response

Visualizing a signal in the angle-Doppler domain can help you identify characteristics

of the signal in direction and speed. You can distinguish among targets moving at
various speeds in various directions. If a transmitter platform is stationary, returns from
stationary targets map to zero in the Doppler domain while returns from moving targets
exhibit a nonzero Doppler shift. If you visualize the array response in the angle-Doppler
domain, a stationary target produces a response at a specified angle and zero Doppler.

You can use the phased.AngleDopplerResponse object to visualize the angle-Doppler
response of input data. The phased.AngleDopplerResponse object uses a
conventional narrowband (phase shift) beamformer and an FFT-based Doppler filter to
compute the angle-Doppler response.

Angle-Doppler Response of a Stationary Target at a Stationary Array

The array is a six-element uniform linear array (ULA) located at the global origin
[0;0;0]. The target is located at [5000; 5000; O] and has a nonfluctuating radar
cross section (RCS) of 1 square meter. Both the array and target are stationary.

The array operates at 4 GHz with elements spaced at one-half the operating wavelength.
The array transmits a rectangular pulse 2 microseconds in duration with a pulse
repetition frequency (PRF) of 5 kHz.

Construct the objects needed to simulate the target response at the array.

hant = phased.lsotropicAntennaElement. ..
("FrequencyRange*®, [8e8 5e9], "BackBaffled",true);

lambda = physconst("LightSpeed®)/4e9;

hula = phased.ULA(6, "Element” ,hant, "ElementSpacing”, lambda/2);

hwav = phased.RectangularWaveform(“PulseWidth®,2e-006, ...
"PRF*",5e3,"SampleRate” ,1e6, "NumPulses®,1);

Angle-Doppler Response

hrad = phased.Radiator("Sensor”,hula, ...
"PropagationSpeed” ,physconst("LightSpeed®), ...
"OperatingFrequency” ,4e9);

hcol = phased.Collector("“Sensor” ,hula,. ..
"PropagationSpeed” ,physconst("LightSpeed®), ...
"OperatingFrequency” ,4e9);

htxplat = phased.Platform("InitialPosition®,[0;0;0],---
"Velocity®,[0;0;0]);

htgt = phased.RadarTarget(“MeanRCS",1, "Model ", "nonfluctuating”);

htgtplat = phased.Platform("InitialPosition”,[5e3; 5e3; 0],---
“Velocity®,[0;0;0]);

hspace = phased.FreeSpace("OperatingFrequency”,4e9, ...
"TwoWayPropagation® ,false, "SampleRate”,1e6);

hrx = phased.ReceiverPreamp(“NoiseFigure®,0, ...
"EnablelnputPort®,true, "SampleRate”,1le6,"Gain",40);

htx = phased.Transmitter("PeakPower”,le4, ...
" InUseOutputPort®,true, "Gain”,40);

Propagate ten rectangular pulses to and from the target, and collect the responses at the
array.

PRF = 5e3;

NumPulses = 10;

wav = step(hwav);

tgtloc = htgtplat.InitialPosition;
txloc = htxplat.InitialPosition;

M = hwav.SampleRate*1/PRF;

N = hula.NumElements;

rxsig = zeros(M,N,NumPulses);

for n = 1:NumPulses
% get angle to target
[~,tgtang] = rangeangle(tgtloc,txloc);
% transmit pulse
[txsig,txstatus] = step(htx,wav);
% radiate pulse
txsig = step(hrad,txsig,tgtang);
% propagate pulse to target
txsig = step(hspace, txsig,txloc,tgtloc,[0;0;0],[0;0;0]);
% reflect pulse off stationary target
txsig = step(htgt,txsig);
% propagate pulse to array
txsig = step(hspace, txsig,tgtloc,txloc,[0;0;0],[0;0;0]);
% collect pulse
rxsig(:,:,n) = step(hcol,txsig,tgtang);

7 Space-Time Adaptive Processing (STAP)

% receive pulse
rxsig(:,:,n) = step(hrx,rxsig(:,:,n),~txstatus);
end

Determine and plot the angle-Doppler response. Place the string +Target at the
expected azimuth angle and Doppler frequency.

tgtdoppler = 0;

tgtLocation = global2localcoord(tgtloc, "rs”,txloc);

tgtazang = tgtLocation(l);

tgtelang = tgtLocation(2);

tgtrng = tgtLocation(3);

tgtcell = val2ind(tgtrng, - ..
physconst("LightSpeed”)/(2*hwav.SampleRate));

snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim

hadresp = phased.AngleDopplerResponse("SensorArray”,hula, ...
"OperatingFrequency”,4e9,
"PropagationSpeed” ,physconst("“LightSpeed”), ...
"PRF",PRF, “ElevationAngle”,tgtelang);

plotResponse(hadresp,snapshot) ;

text(tgtazang, tgtdoppler, "+Target®);

Figure1 oo ==

File Edit View Inset Iools Desktop Window Help >
Dode kAU DEL- QD= =g

Angle-Doppler Response Pattern

2000 [

1000

Doppler Fraquency (Hz)
o

-1000

-2000

Angle (degrees)

As expected, the angle-Doppler response shows the greatest response at zero Doppler and
45 degrees azimuth.

Angle-Doppler Response of a Stationary Target Return at a Moving Array

This example illustrates the nonzero Doppler shift exhibited by a stationary target in
the presence of array motion. In general, this nonzero shift complicates the detection of

Angle-Doppler Response

slow-moving targets because the motion-induced Doppler shift and spread of the clutter
returns obscure the Doppler shifts of such targets.

The scenario in this example is identical to that of “Angle-Doppler Response of a
Stationary Target at a Stationary Array” on page 7-2, except that the ULA is

moving at a constant velocity. For convenience, the MATLAB® code to set up the

objects is repeated. Notice that the InitialPosition and Velocity properties of the
htxplat object have changed. The InitialPosition property value is set to simulate
an airborne ULA. The motivation for selecting the particular value of the Velocity
property is explained in “Applicability of DPCA Pulse Canceller” on page 7-8.

hant = phased.lsotropicAntennaElement. ..
("FrequencyRange®, [8e8 5e9], "BackBaffled”,true);

lambda = physconst("LightSpeed®)/4e9;

hula = phased.ULA(6, "Element” ,hant, "ElementSpacing”, lambda/2);

hwav = phased.RectangularWaveform(“PulseWidth®,2e-006, ...
"PRF*",5e3,"SampleRate”,1e6, "NumPulses®,1);

hrad = phased.Radiator("Sensor”,hula, ...
"PropagationSpeed” ,physconst("LightSpeed®), ...
"OperatingFrequency” ,4e9);

hcol = phased.Collector("Sensor” ,hula,. ..
"PropagationSpeed” ,physconst("LightSpeed®), ...
"OperatingFrequency” ,4e9);

vy = (hula.ElementSpacing*hwav.PRF)/2;

htxplat = phased.Platform("InitialPosition®,[0;0;3e3],...
*Velocity®,[0;vy;0]);

htgt = phased.RadarTarget(“MeanRCS*®,1, "Model ", "nonfluctuating®);

tgtvel = [0;0;0];

htgtplat = phased.Platform("InitialPosition”,[5e3; 5e3; 0], ...
“Velocity®,tgtvel);

hspace = phased.FreeSpace("OperatingFrequency”,4e9, ...
“TwoWayPropagation® ,false, "SampleRate”,1e6);

hrx = phased.ReceiverPreamp(“NoiseFigure~®,0, ...
“"EnablelnputPort®,true, "SampleRate”,1le6,"Gain",40);

htx = phased.Transmitter("PeakPower